INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell information Comparny
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600

THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

STRUCTURAL DETERMINATION AND REFINEMENT OF THE
GRAMICIDIN A TRANSMEMBRANE CHANNEL AS STUDIED BY
SOLID STATE NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

By
RANDAL R. KETCHEM

A Dissertation submitted to the
Program in Molecular Biophysics
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Fall Semester, 1995

UMI Number: 9614514

UMI Microform 9614514
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

The members of the Committee approve the dissertation of Randal R.

Ketchem defended on November 8, 1995.

—i AL

Timothy A. ‘Cross
Professor Directing Dissertation

William T. Cooper, III 7~ "

QOutside Committee Member

WA Y/

Terry Gullion
Committee Member

ety d, T

Randolph/L. Rill
Committee Member

DEDICATION

To my wife, Paula Ketchem, who supported me through the long
years of this work, and to my parents, Fred and Shareen Ketchem, for their

lifetime of love and encouragement.

iii

ACKNOWLEDGMENTS

Many have helped me obtain my Ph.D., without whom this goal
would have been impossible to reach. Although I could never acknowledge
all of them here, I would like to take this opportunity to thank a few of the
people that kept me going.

When applying to the Institute of Molecular Biophysics, I listed Tim
Cross as one of the people I would like to meet with during my interviews.
He discussed with me the various projects in his group and built my
excitement about the program and his research. After being accepted, 1
twisted his arm sufficiently to be admitted into his research group. I made
the right decision for a major professor. Through all of my fumbling and
experimental disasters he never lost his patience, though I often did. He
has guided my project by allowing me to follow my own scientific curiosity.
He has been generous, providing support for me to attend national
conferences and present our research. He has headed the research group
in such a way to promote active support and collaboration. Through all of
these things he has taught me not only a great deal of science, but also
much about the art of science. I will always be thankful for this.

John Riehm at the University of West Florida gave me my first job in
science. For this I am ever grateful. He not only taught me the technical
aspects of protein synthesis and purification, he gave me my love for protein

structure research. His initial guidance was instrumental in my following

iv

years of research, and will continue to affect me for years to come.

I would like to give special thanks to Linda Nicholson and Quike
Teng, both of whom were graduate students in the group when I first
joined. They both taught me a great deal about the research projects and got
me started on my own. Linda spent many long evenings teaching me how
to run the spectrometers. She also taught me many useful computational
techniques. Quike started my project before I joined the group, so my
thanks go to him for getting the ball rolling.

The computational refinement procedure was incorporated into
CHARMM through a collaboration with Dr. Benoit Roux at the University
of Montreal. The maturity of the refinement procedure could not have
occurred without many helpful discussions with Benoit, for which I am
ever grateful.

None of the experimental data used in my research would have been
possible without the help of Dick Rosanske and Tom Gedris, staff in the
Chemistry NMR facility. Tom taught me how to run the Bruker
instruments my first semester and was always available for my questions.
Dick was always ready to rebuild the radio frequency components that I
would burn out or otherwise destroy. When nothing would work, when no
signal could be found from a sample, Dick would come in and fix it all.

The gramicidin samples used in this research could not have been
produced without others. Kwun-Chi Lee and Myriam Cotten synthesized
isotopically labeled gramicidin for me to order. Weidong Hu and Fang Tian
both lent their expertise in organic chemistry to prepare the isotopically
labeled FMOC amino acids used in the syntheses. The staff of the BASS lab,
Hank Henricks and Umesh Goli, were always ready to help with the

peptide synthesis and helped me a great deal with peptide purification.

All of the members of Tim Cross’s group have contributed in some
way to this work. They have all provided helpful discussions and given me
ideas to pursue. I wish to thank them all.

My parents always told me that I could be anything I wanted when I
grew up. They did not leave it all up to me, however. They pushed me in the
right direction and cultivated my abilities before I even knew I had them.
They helped me with my homework, they met with my teachers, they were
integral to my education. Without their help and guidance I would never
have made it this far.

My brother, Fred Ketchem, has been an inspiration to me. He stopped
in the middle of his Bachelor’s degree, just as I later did. He joined the
Navy and went back to school, eventually completing a Master's degree. I
also went back to school, but without the military service. When I completed
my Associate’s degree, he talked me into going to the University of West
Florida, for which I am ever grateful. Since he had attended UWF, he set
up appointments for me and showed me the ropes, making my start there
much easier.

Special thanks go to my wife, Paula. She has helped me in many
ways through these years of work. She listens to my ideas, praises me in
my triumphs, comforts me in my failures, and supports me always.

Most of all T would like to thank God. He has guided me well in this
life and I trust that He will continue to do so in the future. His love and

support have never failed me.

TABLE OF CONTENTS

LIST OF TABLEScouitiiinieiiiieiiiiite ittt sttt ttneeeraessrenesenesenseennas xii
LIST OF FIGURESceiiiiiieiiriie e et eeie e et vt seeeaaneens xiii
ABSTRACT ...ttt et eie e e e teeerasennsarnerennansansannnns XV
1 INTRODUCGTION....ccuuiiitieieieriieererirreteereenerteererenserereneseennssernosennnnns 1
1.1 Dissertation OVerviewc.ccoeeiviniiiiiiiiiiiieniiciiiiic e eeeeens 1

1.2 Proteins....c.cvuieiiiiieiuiieiireireiernreneeisneeenrneranereseiernnenereenssesnenns 2

1.2.1 Protein Composition.........ccceveiiiiiieiiiiiiniiiininrceieinnans 2

1.2.2 Protein Structurec...ceveeeeiirmeieiiiiiieeercreeneeeenes 4

1.3 Gramicidin.......ccoiiirurieieiiniiiiiii ettt eeaeaas 4

1.4 Phospholipid Membranes..........ccccevueieieriiiieniirieiarieieeeneniaranns 8

1.5 Solid State Nuclear Magnetic Resonance.........c..ccccceevvevnnennna.n 10

1.5.1 NMR...oooriiiiiiiiiiiiiic et e et eene s re e 1

1.5.2 Chemical Shift........coooiiiiiiiminiiiiiiiiiiiiniir e 14

1.5.3 Dipole-Dipole Couplingcccevveeveiiiiiiiiiieiiiinenenenenennnn. 17

1.5.4 Quadrupole Interactionc.cocevveeviiriiirenennvnenennenne. 18

1.5.5 Use of SSNMR Observed Interactionsc..cccceeveenenn. 20

1.6 Computational Methodsccoeviuieiiiiieiiiiiiiiiiiirceeeeneee, 20

1.6.1 Simulated Annealingccccceeiiiiiiiiiiiiiiiiiiiiienenee, 20

1.6.1.1 General descriptionc..cvceeveiveieinininnninnnnnns 20

1.6.1.2 Application of the Metropolis algorithm 21

1.6.2 Protein Structure Determination and Refinement......... 24

1.6.2.1 Solution NMR....oirieiiirieiieiiiiieiieeeeniercscaseses 24

1.6.2.2 Solid State NMR.....cccooivririivimmneriircenierrenevenenn 25

1.6.2.3 CHARMMccivniruiiiniiniiiiiieniiecieeceeeaeeneenes 26

2 MATERIALS AND METHODScccoeiiiiiiiiiiiiii it 27
2.1 MaterialS......ccccvvvviiniiviiiiniiiinniininnn. reeerrierre e aeaas 27

2.1.1 Dimyristoyl Phosphatidylcholine........ccccccevvrrvenncennnnnn. 27

2.1.2 Gramicidin A.......ccooiiiiiiiiiiiiiiiii 27

2.2 Oriented Sample Preparation..........ccceceveviiiiiniieciineeninicenennen, 28

2.3 NMR Experiments.......ccccoceuvuiiiimeriiniiiiiiiniiiiiiiininiieneneenns 29

2.3.1 Cross Polarization...........ccooevviviiniiiiiiiiiinninnniinn 29

2.3.2 Cross Polarization Echo........cccccovviiiiiiiiiiiiiinn 32

2.3.3 Separated Local Field.......cccooioviiiiiiiiiiiinnnnnnninnninnnnnen, 3

2.4 NMR Data Processing.......cccveeevieiiiininiiiciiniiiiiinininininicenen. H#

2.5 Molecular Visualization and Analysis......cccccevivieiniiennecnnnnan. 35

2.6 Computational Analysis......cccccoeeviiiinieniiiiiiiiiiiiiiinniicnenan. 35

3 DETERMINATION OF THE INITIAL STRUCTUREc..ccocvviiininnin 36
3.1 Introduction......ccccociciiiiniiuiiiiiniimiiniiiiiii e, 36

3.2 Calculation of the Individual Torsion Angles.......c..cccvuvvinennn.n. 37

3.2.1 Determination of Possible Peptide Plane Orientations....37

3.2.1.1 Experimental data used....cccccccovuruuererranicnns 38

3.2.1.2 Bond orientations and experimental error........ 39

3.2.1.3 Bond orientation ambiguitieso....l. 42

3.2.2 Linking the Peptide Planes........ccccooiiiiiiiiiiiiiiinininan, 42

3.2.3 Reduction of the Possible Torsion Angle Solutions......... 44

3.2.4 Characteristics of the Remaining Diplanes.................. 47

3.3 Building the Initial Backbone Structurecccvvevvininenann.e. 47

viii

3.4 Addition of Sidechains to the Backbone......coooveieeioeemiiienennnnnnn. 50

3.5 DiSCUSSION .. ccuuiiiniiniiiitiiiiiiiiiree e eee ittt eeereeeeeeneerneneerneenes 51

4 COMPUTATIONAL REFINEMENT........ccoooriimniirecerereeeeeeeeeeeeeeenee, 54
4.1 Introduction.........ceceueiieimiiiiiiiiineiiriiiie e e 54

4.1.1 General Strategyccevviviiiriieririreciieereeeneeeeeeeans 55

4.1.2 Characteristics of the Initial Structure Indicating a Need

fOr Refinement. ..o ciuiinieiiiiieiiiereeeeeeeeeeeeeeresesnenerennnns 56

data...ccovieniiniiii e 56

4.1.2.2 Consideration of structural aspects.................. 57

4.2 Structural Refinement Using Simulated Annealing................. 58
4.2.1 Application of Simulated Annealing.......ccccceerrerenenn..... 58
4.2.2 Preparation of the Initial Structure............ccoeeennaneni.. 59
4.2.3 Structural Modification Strategy............cccovuvivevnvnnnnn.e. 60
4.2.3.1 Compensating moves.......c.ccccvvevveveenrvenenrenennen. 61
4.2.3.2 Tunneling mMoves.......c.ccecvevevrvenrenieieieeneneenenenes a2
4.2.3.3 AtOM MOVES ...e..iviveniiiniiiiniiieeeneeiiei e eaanens 62

4.2.4 Penalty Function.......cccoveuiviniiieeiiiieinieeeeeeeeevaeneen 62
4.2.5 Structural Constraints Used......ccccccvevvevveereeereeeeeeennne. 65
4.2.6 Annealing Strategyccccvevviirevinriiieiereieeeeeeiennns 66

4.2.6.1 Control temperature and annealing schedule...67

4.2.6.2 Annealing parameters...........cccoceeveeeninennn.n.. 68

4.2.6.3 Program considerations.........cccceeeevvveinivninnnens 68

4.3 Refinement Results.....c..ccccviiiriiiiiiiiiiiiiiieiiiiereeeeeeeee, 71
4.3.1 Peptide Plane Orientations..........cc.ocevevinenieninininninnnnnn. 73

4.3.2 Refinement Trajectories.....cccccceeuuiveiencviveniieeenierreennnns 76

ix

4.3.3 Hydrogen Bonds........ccocuvvuieriiniiiiiiininiiniieeeeeenvneen, 80

4.3.4 Structural Geometry.......ccooreviererrirereieerreieenieeieeennnes 81

4.3.4.1 Omega torsion angle........c.ccceevvviviineinnnininnnnn. 81

4.3.4.2 Influence of the CHARMM energy................... 81

4.4 DiSCUSSIOIL...viuuiiniuniiniiniiiiiiiiiiiiiiiiinie e oo et et enerianneaasanns 32

5 DETERMINATION AND ANALYSIS OF THE FINAL STRUCTURE.....87
5.1 Introduction........ccoviiiiiiiiiiimiiiiiiiiniiiie s 87

5.2 Refinement of the Individual Initial Structures........c...c........... 88

5.2.1 Structural Ensembles.......ccc.covveniiiiiiniiiiiiiiiniiiiinennns 88

5.2.2 Backbone Carbonyl Orientationscceceevvnvnvninnen.n. 91

5.2.3 Merging the Initial Structure Refinement Ensembles ...92

5.3 Refinement of the Average Structurecccoevvvvvviniiieninnnen... 9%
5.4 Characteristics of the Final Structure............c.cccoivnirinininnan.n. t]
5.4.1 Peptide Plane Orientations..........cocovvievivivininninnninnn.. 103

5.4.2 Helical Parametersc...ccccevvieieniiiineniiniinrenenennnnnnn. 104
5.4.2.1 Residues per turn...........cocevvvvvivvinniirnennnnnnns. 105

5.4.2.2 Helical pitch....cccoovevernvrrierrieiniieiiienceenaee, 106

5.5 DiSCUSSION 1uueviininnieiiiiniiienieiiitineitietraeeeeeeternraensnrrrnrans 106
5.5.1 Structural Comparison...........ccoeevvvnvenennnnnnn.. 106

5.5.2 Functional AspectS.....coccovveereriveiriiiieivinencennnnns 111

5.5.3 Final Remarks.....ccccoeorivviiirirniiiiiiniiirnnniinnnnnns 112
APPENDICES......cu ittt eeee et ete e nr e e e s e 113
A.1 Experimental SSNMR Data....ccccceeuiieinvriviiriieiiieiiienieieenneee 113
A.1.1 Sample Data Plotsc..ccocveiieeiiiniiniiieiiieieneneenes 113

A.1.2 Data Tables....ccccouieeriiiiniiiiiiiiicriiiiiee et 120

A.2 Atomic Coordinates of the Final Gramicidin Structure.......... 126

A.3 Anczlysis of the Final Structure......ccccccevvvvveevveirecereennaaennnee. 136

A3 1 TORC Output...uceueuniiiiereiiiieieieiiieiee e eveenes 136

A.3.2 Procheck Outputcvuivviiveniieiieiieiiicicicieereecennes 140

A.4 Program Source Code......ccccoerrmmmiuruiieieiiiniininireeninerenrenenn. 146
A4l CNFCS.....ciiiiiiiiiiiiiicccieiie e eerier e ee e eneaes 146
A4.2C00RDSiiiiiiiiiiiiirc e 158

A.4.3 TORC....coiiiiiiiiiiic ettt et e e 167

A.4.3.1 TORC source code........cc.eeuuvrurrirnennennnnnnnnn. 167

A.4.3.2 TORC Makefile.......ccccevvnveniineiiennieennnnn. 261

A.4.3.3 TORC/CHARMM sample input file............... 263
REFERENCES......coiitttiiiiiieiieetttiee e e s eetersieeee s e senbeese e eesnennns 265
BIOGRAPHICAL SEKETCHcoitteuiiiinniitiiariiieeeineereneerenaeierenrreneeeenes 273

xi

Table 3.1
Table 3.2
Table 3.3

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 5.1
Table 5.2

Table 5.3:
Table 5.4:

LIST OF TABLES

Calculated versus Experimental 15N-13C; Dipolar Splittings..40

Possible Alag Diplane Torsion Angle Pairs.........cc..ccocevenenin. 44
Experimental Co-2H Quadrupolar Splittings Compared with

the Sixteen Possible Alag (¢, y) Solutionsc.ceevvverninnnnnee 46
Attempted and Accepted Refinement Movescccueenneeee. 72

Penalty Distribution for the Initial and Refined Structures....72

Carbonyl Orientations.......ccoccvevveiiieiiiiiviiiiiiininniieienennn.. 74
Peptide Plane Moves Per Residueccoouviinviinnnnnii. 7
CHARMM Energy Distribution.........ccoeveveiiiiiiiiiiiininnnnnn 79

Refinement Penalties for the Average and Final Structures..97

Initial and Final Structure Torsion Angles............c.......... 102
Arseniev Structure Torsion Angles.....c.cceevveiniiieniiinninanen. 108
Ketchem and Arseniev SSNMR Penalties...........ccoveeeninenen. 111

xii

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

LIST OF FIGURES

Dipeptide .ccuiiniiiiiii e 3
BetaSheet.....ccooivuuiiiiniiiiiiiec e 6
Lipid Bilayer....ciuieniiiiiiiiiii e e 9
Energy Level Diagram for a Spin 1/2 Nucleus 12
Bulk Magnetizationcoeeveiiiiiiiieiiiiiiienciicinieeennens 14
Chemical Shift Tensor........ccceveiiriiiiiiiiriieerieeeereeiieeanenns 16
Traveling Salesman Path Before and After Simulated

2N o8 1 1= 1 5§ 11 - 24
Cross Polarization.....c...ccceeeviiiniiiiiinieniiieiiirneieeineieeaenas 31
Cross Polarization Echocc.ccocovviiiniiiiiiiiiiiiiiiiiiiiiinneen.n 32
Separated Local Field..........ccccovviiennnniii . 34
Peptide Plane Definition........ccccoiiviiiineininicriiiinenieieiininnnne, 38
15N-13C; Dipolar Splitting as a Function of N-C; Bond

Orientation.......cccovevviiiiiniiiiiiiiiii e 41
Possible Alag (¢,) Solutions........ccceevveviicenieeineeneinrienennnnnss 45
Peptide Plane Overlap........ccoccviuiiiienieiiiiiiniiiiiiniieieenanenes 48
The Four Initial Backbone Structures........c..ccoceveuvviiennniinni. 49
Hydrogen Bonds and VDW Interactions.........c.cccoevvuvenenennn.. 58
Compensating Peptide Plane Moves....c..cccoevevvnrrrrervenrnnnneen. 60
Tunneling Peptide Plane Movesccccevvvveveieieneiiiiiieninenen.. 61
Penalty Function with Different Data Types.........ccevvuuneen.n.. 64
Penalty as a Function of Experimental Error....................... 64

Xiii

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

TORC Algorithm.......c.ccieeiiiiiiiriiirieieeece e, 69
Structural Representation of the Refinement Procedure........ 73
Backbone Carbonyl Orientation Trajectory........cccccecevvrrnnn... 76
Refinement Trajectories for Selected Data Types.................. Tl
Intramolecular Hydrogen Bond Distances...........cccc........... 80
Initial Structure Refinements...........cccovevviiiiiiiivinnenninnnnn.n. 89
Carbonyl Orientations for Initial Structure Refinements....... 91
All Forty Refinements........ccceeeuvmieiiiceieniiiiiiiiiiiinneneenenns 93
Average Structure with Four Initial Refined Structures....... %
Penalty Per Residue.....c.covvvevvinieiinieiiiiiiiiiiiiieieieeciieeenes RNV
Average and Final Refined Structures...........ccccvvvenvnenennen.. 9
Final Structureccccoviniiiiiiiiiiiinni e 100
Final Structure as a Head to Head Dimer..........c..cc........... 101
Final Structure Bond Orientations........cccccervvvivvnrennnnnnnnn. 103
Helical Parameters as a Function of Cg Location................ 105
Ketchem and Arseniev Structures...........ccccovivvenveinrnnnnnen. 107
Ketchem and Arseniev Backbone Torsion Angles............... 109

Xiv

ABSTRACT

The determination of protein structures is central to the field of
structural biology. Although techniques exist and are well developed for the
determination of proteins in solution and proteins that are readily
crystallized, techniques for the determination of protein structures in the
solid state are just now being developed. Described here is such a technique.
The structure of the membrane spanning, monovalent cation channel
gramicidin A is solved through the use of experimentally determined Solid
State Nuclear Magnetic Resonance orientational constraints. The structure
is solved for the peptide in its native conformation in a fully hydrated lipid
bilayer by taking advantage of the wealth of experimental observations. The
resulting structure is computationally refined by a method described here
using a simulated annealing protocol which defines a penalty function
based on the experimental observations and the CHARMM energy. This
refinement strategy produces a structure that meets the experimental data

and has a reasonable global energy.

XV

CHAPTER 1
INTRODUCTION

1.1 Dissertation Overview

Molecular biophysics is the branch of science that utilizes the
application of physics to explore biological processes and phenomena on the
molecular level. Many of the biological processes of life are carried out by
complex systems composed of biological macromolecules, such as proteins.
Since these molecules exist in the atomic world, physics is well suited to
study their structure. The determination and understanding of the
structure of these proteins at an atomic level is central to the
understanding of their function.

Although most proteins exist within an aqueous media, many find
their roles within an anisotropic environment, such as a cell membrane.
Developing methods for the determination of the structure of proteins in
such an environment is necessary. Solid State Nuclear Magnetic
Resonance (SSNMR) is a useful tool for studying such systems when
coupled with appropriate observations. The results of these observations
can be interpreted to provide conformational constraints on the structure of
the observed system. These constraints may then be used to build a high
resolution structural representation of the protein.

This dissertation will introduce and discuss a method for the

experimental structural determination and computational refinement of

the peptide gramicidin A (gA) in a fully hydrated lipid bilayer. Chapter 1
gives a brief introduction to proteins, gramicidin, phospholipid
membranes, SSNMR, and computational methods. Chapter 2 contains a
description of the materials and methods used in this study. Chapter 3
provides details of the method for the determination of the initial gA
structure, focusing on the peptide backbone. Chapter 4 describes the
computational refinement of the entire gA structure constrained by the
SSNMR observables. Chapter 5 discusses the final structure. An appendix
has been included that contains the SSNMR spectra obtained for many of
the observables, the final atomic coordinates, an analysis of the final
structure, and the source code used to obtain the complete structure.
1.2 Proteins

Proteins are extremely important components in biological systems
and are present in all living systems. They provide structure inside and
between cells. They transport, such as hemoglobin and membrane
channels. They synthesize and metabolize as enzymes. Proteins are the
most versatile of all biological macromolecules. DNA is said to be the
blueprint of life, but it is actually a blueprint for proteins.
1.2.1 Protein Composition

Despite the variable roles of proteins, they are composed of very few
common building blocks known as amino acids. Twenty different amino
aci“s are used to form the wide array of proteins necessary for the survival
of an organism. The difference between the amino acids lies in the R group
which is attached to the alpha carbon, as shown in Figure 1.1. Different
substitutions on the alpha carbon form different amino acids. The amino

acids covalently link in specified sequences to form a polymer, as shown in

2

Figure 1.1. The possible combinations of these twenty amino acids is

sufficient to form all of the proteins required by an organism.

~ YO~ \ C

- f\ S / \

P N ~ /
- N ~ o \ -~
R H H Ay g -
Peptide Linkage O
L I | i
L Amino Acid D Amino Acid
L]
Peptide Plane

Figure 1.1: Dipeptide. Two amino acids link together to form a
dipeptide. The amino acids link together by forming a covalent bond
known as the peptide bond. The six atoms in a peptide linkage (Cq, C,

O, N, H, Cy) define a plane if the w torsion angle is either 0° or 180°.
The R group defines the amino acid type.

All of the individual amino acids have a specific stereochemistry
about the central alpha carbon, except glycine which has a hydrogen for an
R group. The chirality of an amino acid is determined by comparing its
rotation of polarized light with glyceraldehyde. D-glyceraldehyde
(dextrorotatory) rotates polarized light to the right, so amino acids that
behave in the same manner are D amino acids. Amino acids that rotate

polarized light opposite to that of D-glyceraldehyde are termed L
3

(levorotatory) amino acids. D and L. amino acids are shown in Figure 1.1.
All amino acids found in nature that are used by ribosomes for the
synthesis of proteins are L amino acids.

1.2.2 Protein Structure

The sequence of amino acids is termed the protein primary
structure. Proteins fold by changing the torsion angles about the backbone
bonds. The peptide linkage, affected by the ® torsion angle, is considered
planar due to its resonant bond structure, so changes in the ¢ and y torsion
angles dominate the backbone structure of proteins. Local regions in the
protein can fold into distinct secondary structures, such as alpha helices,
beta strands and beta turns. These local secondary structures in turn fold
together to form tertiary structures. Separate sequences folded into tertiary
structures can bind together into a single functional unit leading to
quaternary structure.

The final structure of a protein is dependent not only upon its
primary structure, but also upon the environment in which it exists. The
different amino acids have properties, such as hydrophobicity and charge
that vary with environment. For example, a globular protein in an aqueous
environment will have a shell of mainly hydrophilic amino acids
surrounding a hydrophobic core. Proteins that span a lipid bilayer will have
mainly hydrophobic amino acids within the lipid environment. When
protein structure is discussed, it is important to consider both its sequence
and environment.

1.3 Gramicidin
The membrane protein system used in this study is the peptide

antibiotic gramicidin A (gA). gA is a pentadecapeptide that forms a

4

monovalent cation channel in membranes. The gA monomer consists of
fifteen amino acids, VGALAVVVWLWLWLW, with alternating L. and D
stereochemistry. The N-terminus is blocked by a formyl group and the C-
terminus is blocked by ethanolamine (Sarges and Witkop, 1965).
Gramicidin has been studied for more than fifty years as a simple
membrane protein model. Despite the extensive research done on this
channel, the complete structural description of the peptide in hydrated lipid
bilayers has never been presented before and is the subject of this
dissertation.

Gramicidin in nature exists as a mixture, denoted gramicidin D,
composed of 80% gramicidin A, 5% gramicidin B and 15% gramicidin C
(Weinstein et al., 1980). Substitution of Trpi; in the sequence stated above
with Phe yields gramicidin B, while substitution with Tyr yields gramicidin
C. Synthesis is performed by multi-enzyme complexes that build the peptide
from the N-terminal valine and ending with the addition of the C-terminal
ethanolamine (Lipmann, 1980; Kurahashi, 1981). The naturally occurring
L-residues are converted to D-conformers during the process (Akashi et al.,
1977; Akashi and Kurahashi, 1977).

Gramicidins are antibiotics produced by the bacterium Bacillus
brevis during sporulation (Katz and Demain, 1977). The gramicidin
molecules form monovalent cation channels across biological membranes
causing lysis of many Gram positive bacteria. The disruption of the ion
gradient in the targeted bacteria is lethal, thus providing B. brevis with
needed resources for sporulation. Gramicidin has also been shown to

induce sporulation in B. brevis (Mandl and Paulus, 1985).

Left Handed Right Handed

Figure 1.2: Beta Sheet. The primary structure of gA is such that the
individual amino acids alternate in stereochemistry. The odd residues
are (L) and the even residues are (D). When the structure is formed
into a beta sheet, all of the amino acid sidechains lie on the same side

of the sheet. This causes the B-sheet to bend into a B-helix. Depending
on which end crosses the other, the helix can be either right handed or
left handed. In the case of gA, the helix is right handed.

Due to the alternating L, D amino acids that make up the primary
structure of gA, the structural motif formed by gA in lipid bilayers is that of
a B-helix, with a backbone hydrogen bonding pattern similar to that in
B-sheets (Urry, 1971). Since the amino acids alternate in stereochemistry,
all of the sidechains are on one side of the peptide straﬁd, forcing the
backbone to curve, thus causing the formation of a helix, as shown in
Figure 1.2. Since the backbone hydrogen bonding pattern is that of a
B-sheet, the structure is termed a B-helix. The helical pitch has been

measured by X-ray diffraction and found to be 4.7 + 2 A (Katsaras et al.,
6

1992) with 6.3 residues per turn. This gives the channel a length of 26 A
with a pore diameter of 4 A

As a helix, the hydrophobic sidechains point away from the helical
axis, providing a hydrophobic environment on the surface of the helix. This
allows the helix to exist in the hydrophobic region of phospholipid
membranes, while at the same time providing a hydrophilic channel. The
carbonyl oxygens, as well as the amide protons, are also typical of the -
sheet structural motif in that they alternately point parallel and anti-
parallel to the helix axis. The presence of the carbonyl oxygens, along with
the absence of the sidechains, in the channel pore produces a hydrophilic
environment in the interior of the channel that allows for the passage of
both water and monovalent cations.

The general structural motif as outlined above has been confirmed by
SSNMR in phospholipids (Nicholson and Cross, 1989; Ketchem et al., 1993;
Mai et al., 1993) and by solution NMR studies in sodium dodecyl phosphate
(SDS) (Bystrov et al., 1987; Lomize et al., 1992). Spectroscopic data has been
used to suggest that the helix is composed of roughly 6.3 residues per turn
(Prosser et al., 1991), and to determine that the helix is right handed in
lipids (Nicholson and Cross, 1989). Further studies have shown that the
monovalent cation channel is formed by an N-terminus to N-terminus head
to head dimer of gA in hydrated lipid bilayers (Bamberg and Lauger, 1987).

gA in hydrated lipid bilayers does not lend itself well to conventional
structural studies. The structural species formed in organic solvents have
been solved by solution NMR (Bystrov et al., 1987; Pascal and Cross, 1992;
Pascal and Cross, 1993) and by X-ray crystallography (Wallace and

Ravikumar, 1988; Langs et al., 1991), but these structures are not consistent

with channel function. The formation of co-crystals with lipids has proven
difficult (Wallace and Janes, 1991). Solution NMR has been used with gA in
SDS (Bystrov et al., 1987; Lomize et al., 1992), but the sidechain
conformations differ from those determined by SSNMR (Hu et al., 1993).
The gA channel system is well suited for study by SSNMR since the
channel can be easily incorporated into oriented lipid bilayers (Moll and
Cross, 1990; Mai et al., 1993) and, therefore, the channel can be oriented
with respect to the external magnetic field allowing for structural
characterization.

The structural study of gA in hydrated lipid bilayers will establish a
method that can be applied to similar systems. The experimental
techniques for obtaining structural constraints, the means by which these
observations are converted to direct structural information and the
computational structure refinement based on these observations are
important for the study of membrane protein structures.

1.4 Phospholipid Membranes

Membranes are essential in the function of all cells. They are used to
compartmentalize specific regions such as the nucleus, mitochondria, and
the entire cell. Membranes also facilitate communication between~ the
inside and the outside of these compartments, taking form in the passage of
ions or conformational changes in the membrane. Also, proteins embedded
in membranes are used for channels, communication and recognition. The
major role of membrane lipids is to form lipid bilayers.

The peptide gA forms a monovalent cation channel in hydrated lipid
bilayers. In preparing samples of gA in oriented lipid bilayers, the

phospholipid dimyristoyl phosphatidylcholine (DMPC) is used in this study.

8

Phospholipids consist of a polar head group and long hydrocarbon tails,
and are therefore amphipathic. As such, phospholipids readily form
bilayers in aqueous media that have the polar head group of the
phospholipid interacting with the polar solvent and the hydrophobic tails on
the interior, as shown in Figure 1.3. The most significant interaction in an
aqueous solution is the hydrophobic interaction. The nonpolar molecules
cannot participate in the hydrogen bonding in the aqueous solution. The
absence of hydrogen bonding between the nonpolar molecule, such as the
lipid tails, and the water, rather than a favorable interaction between the
nonpolar groups themselves, is a major factor in the stability of proteins

and membranes.

Figure 1.3: Lipid Bilayer. This schematic representation of a lipid
bilayer shows the polar phospholipid head groups pointing outwards,
thus interacting with the polar, aqueous media in which the bilayer
exists. The apolar hydrocarbon tails group together forming a
hydrophobic region.

The lipid bilayer forms a membrane around a biological cell which
serves to protect it, and provides an effective barrier to most small molecule

solutes. For a substance such as a monovalent cation to enter or leave the
9

cell directly through the cell membrane, it would have to pass through the
hydrophobic region of the membrane. The cation would have to break all of
its bonds and shed its waters of hydration in order to do this, which would
be energetically unfavorable. There is a constant flux of polar and ionic
substances across the membrane, however. This transport is protein
mediated by channels (or pores) and transporters. Channels are often
pictured as tunnels across the membrane in which binding sites for the
solutes being transported are accessible from either side of the membrane
at the same time. Channel proteins do not require conformational changes
to transport the solute, while transporters do. Channels do undergo
conformational changes, though, as a regulation mechanism. In order to
facilitate the passage of monovalent cations, to the demise of the host cell,
gA forms a channel through the bilayer, thus destroying the cation
gradient maintained by the membrane.
1.5 Solid State Nuclear Magnetic Resonance

The structure and refinement of gA in hydrated DMPC bilayers
requires experimentally derived structural constraints. The method
described here to obtain these constraints is SSNMR of oriented samples.
SSNMR does not require that samples be crystallized, as in x-ray
crystallography, nor does it require the system to undergo fast isotropic
motions, as in solution NMR. SSNMR can be used to characterize
interactions in an anisotropic environment or to determine structural
information. Structural information can be obtained by either magic angle
spinning to average the anisotropic interactions to obtain distance
information, or by aligning the molecule of interest with the external

magnetic field to obtain orientational information. The latter approach is

10

used in this study.

A number of texts describing NMR in detail have been written
(Abragam, 1961; Slichter, 1990; Sanders and Hunter, 1993). I will give a
basic description of NMR here to facilitate an understanding of the
experiments used in this study.

1.5.1 NMR

Nuclear spins have associated with them angular momentum
described by the spin quantum number, I. The magnitude of the angular
momentum, P, for a spin is

P=R[I(I+1)], (1-1)
where # is Planck’s constant divided by 2r. The angular momentum of a
positively charged nucleus has a magnetic moment, fi, which interacts
with an applied magnetic field. The magnetic moment and the angular
momentum are related by

fi=7P, (1-2)
where 7 is the gyromagnetic ratio of the observed nucleus.

The interaction of the nuclear magnetic moment with the external
magnetic field, Bg, is termed the Zeeman interaction. This interaction
removes the degeneracy of the different spin states so that

E,=-u,-B,, (1-3)
where

U, = Yhm (1-4)
is the projection of i on the external magnetic field.

For spin 1/2 nuclei (I = 1/2), such as the 15N, 13C and 1H used in this
study, two energy levels are generated in a magnetic field, as shown in

Figure 1.4. The energy states are described by the nuclear spin quantum

1

number, m, and are separated by an amount AE. The total number of
energy states is 2I + 1 with values ranging from -I, -1+ 1, ..., +I. The

difference in the energy states is field dependent, described by
AE = hyB,. (1-5)

m=-1/2 (P state)

X —

m=1/2 (o state)

By —

Figure 1.4: Energy Level Diagram for a Spin 1/2 Nucleus. As the
magnetic field, By, increases, the separation between the energy states

increases. The energy states are denoted with m.

For a single value of By, the frequency for the transition between the o

and B'energy states is given by
hv = |hyB,Arm| (1-6)
v, =|7/27|B,, (1-7)
where Vv, is termed the Larmor, or observation, frequency. The
gyromagnetic ratio is the proportionality constant that relates the Larmor
frequency for a particular nucleus to the applied magnetic field. Different
values of y for different nuclei lead to different Larmor frequencies for the

different nuclei on a particular spectrometer. The gyromagnetic ratio for

1H is 26.7520 x 107 radians Tesla-l s'1. In a 4.7 Tesla magnetic field the
12

Larmor frequency is 200 MHz. An 15N nucleus, with a gyromagnetic ratio
of -2.712 x 107 radians Tesla-l s-1, has an observed frequency in the same
field of 20.272 MHz (Fuller, 1976).

The two energy states for a particular nucleus do not have equal
populations, and their ratio is given by the Boltzmann equation

Ng /N, = exp(-AE/KT), (1-8)
where Ng is the population of the lower state, Ng is the population of the
upper state, k is the Boltzmann constant and T is the absolute temperature.
The population difference is directly related to the bulk magnetization and
is dependent upon both the gyromagnetic ratio and the applied field. For
protons at 200 MHz, the population difference is on the order of 1 in 105,
which is very small. Despite this small population difference, NMR is able
to measure the effects of the induced magnetization by resonance methods.
The observable signal in NMR may last several seconds, allowing for
various experiments to be performed leading to many different types of
information.

The behavior of the bulk magnetization, M, can be described using
vector diagrams. The bulk magnetization is the sum of the magnetization of
the individual nuclear spins. M is initially aligned with Bg, as shown in
Figure 1.5. The direction of Bg is assigned to the Z axis of the laboratory
Cartesian coordinate system. M will remain along B¢ unless it is perturbed.
Once M is perturbed, there is a force on M by Bg. The magnetization
behaves similarly to a gyroscope in a gravitational field and, therefore, the
torque generated by Bg on M causes M to precess about By at a frequency

Vo = ¥B,, (1-9)

known as Larmor precession. M will eventually relax to By after a time T,

13

but during much of this time a vector component of M will precess in the
XY plane. If a coil is wrapped around an axis perpendicular to the applied

field, the precessing magnetization will induce a current in the coil which

is read as the NMR signal.

Bo Bo
AZ 72
AM
"~ 90° Pul
- se /__
Y {1 Y
Vo
X X

Figure 1.5: Bulk Magnetization. The bulk magnetization, M, is
originally aligned along the applied magnetic field, Bg. After M is

perturbed by a 90° pulse, the magnetization lies along Y and precesses
about Z and By, at a frequency vg.

The precession of the magnetization is influenced by several
interactions, such as chemical shift and dipole-dipole coupling. These
interactions are observable by NMR experiments and provide useful
information about the observed system. The observation and interpretation
of these interactions are used in this study to provide structural constraints
on gA leading to a structural solution for this peptide.

1.5.2 Chemical Shift

The precession frequency of the bulk magnetization of a single spin
14

population is influenced by its electronic environment. Electrons circulate
around the observed nucleus generating a local magnetic field in opposition
to the external field. This has the effect of shielding the nucleus from By
and is described by an induced field

B,, =-6B,, (1-10)
where & is the second rank chemical shift tensor.

The chemical shift tensor is described by a 3 x 3 matrix and can be
visualized as three orthogonal vectors. The magnitudes of the tensor
components define an ellipse and the orientation of this ellipse with respect
to the applied magnetic field defines a chemical shift value, as shown in
Figure 1.6. If the coordinate system expressing the tensor is oriented along
the semi-axis of the ellipsoid, the tensor is said to be in the Principal Axis

System (PAS). The matrix describing the PAS is

oy O O
Ops=| 0 o, 0| (1-11)
0 0 o4

where oxX, 0YY, and o7z are the principal elements of the tensor. The
tensor elements are labeled as |0, - 0,,|2|0y —0,,|2|0y —0,|, Where
Oy =(0yx + Oy + 0)/3.

If the population of nuclei giving rise to the observed signal is
undergoing fast isotropic motion, much faster than the frequency range
defined by the chemical shift anisotropy, then the chemical shift will be
observed as the isotropic average of the chemical shift tensor and is termed
the isctropic chemical shift. If the nuclei are in all possible orientations
with respect to Bg and are undergoing slower motions, then the NMR
spectrum will exhibit a dispersion of peak positions due to the chemical

shift anisotropy. The principal values of the chemical shift tensor can be

15

measured in this way. If the nuclei giving rise to the signal have a unique

orientation with respect to Bg, only a single chemical shift value will be

observed.

Figure 1.6: Chemical Shift Tensor. The chemical shift tensor is defined
by the tensor elements oxx, oyy and o7z in the Principal Axis System
(PAS) and is oriented with respect to the applied magnetic field, By,

through the Euler angles 6 and ¢. The tensor elements define an
ellipse and the orientation of this ellipse with respect to By defines the

chemical shift value.

The value of the chemical shift is dependent upon the orientation of
the nuclei in the magnetic field and can range from the maximum to the
minimum tensor element value. Since the magnetic field is aligned with

the laboratory Z axis, the chemical shift value is described fully by the Z

16

component of the tensor as
O g = Oyy COS” @sin’ 8+ 0,y sin’ ¢sin® @ + 5, cos’ 6 (1-12)
where ¢ and 6 are shown in Figure 1.6.

Since the chemical shift has an orientational dependence with the
applied magnetic field, structural information can be gained from the
observed chemical shift value of a sample oriented with respect to the
magnetic field when coupled with knowledge of the chemical shift tensor.
The orientation of the chemical shift tensor with respect to the molecular
frame can be measured (Teng et al., 1992). By then observing the oriented
chemical shift value, the orientation of the molecular frame with respect to
the magnetic field can be constrained, providing a powerful structural
constraint (Teng et al., 1991; Ketchem et al., 1993).

1.5.3 Dipole-Dipole Coupling

Spin 1/2 nuclei generate a spatial dipolar field around themselves,
and the field is modulated by surrounding spin 1/2 nuclei due to the
interactions between the nuclei through space. The dipole-dipole
interaction is a function of the two nuclear magnetic moments, the distance
between the two nuclei and the orientation of the dipolar tensor with respect
to the magnetic field, but is not a function of the strength of the external
magnetic field.

The dipolar coupling tensor, D, describes the dipole interaction and
is an axially symmetric and traceless tensor (Mehring, 1983) in which the
principal axis lies along the vector connecting the interacting nuclei. The

dipolar interaction Hamiltonian for two nuclei I and S is

3

2
i, =1 5ps (1-13)
r .

where T and § are the nuclear spin operators and r is the distance between

17

the spins I and S. The dipolar interaction is weak compared to the Zeeman
interaction, and therefore only the first order contribution needs to be
considered. As a result, only the Z component of the dipolar coupling tensor
is considered, which is

2
A, =1 (3c020-1)1,5, (1-14)
r

where 0 is the angle between the unique axis of the dipolar interaction and
the external magnetic field. For a spin 1/2 nucleus, the detected NMR

signal from a dipole-dipole interaction is

Av=v,(3cos’ 0~ 1) (1-15)
where
h
v=LEs, (1-16)

Av is the observed dipolar splitting in hertz and v) is the magnitude of the
dipolar interaction.

If the length of the vector between spins I and S is known, then the
observed dipolar splitting for an oriented sample serves to define the
orientation of the internuclear vector and the external magnetic field. This
provides another structural constraint.

1.5.4 Quadrupole Interaction

Nuclei with I > 1/2 have an ellipsoidal spatial charge distribution in
the nucleus. The ellipsoid can be either prolate or oblate to guarantee a
symmetric distribution about the nuclear spin axis. The distribution of
charged particles generates an electric quadrupole moment defined by eQ,
where e is the charge of a proton and Q, in length squared, is a function of
the spatial distribution of the positive charges within the nucleus.

The electric quadrupole moment has no net interaction with a

homogeneous electric field, but interacts with an inhomogeneous electric

18

field. Such an interaction is termed the quadrupole interaction.

A, =101) 1-17)
A eQ ~)
Q= 21(2I - 1) v (1-18)

where ﬁQ, is the Hamiltonian for the quadrupole interaction of spin I, 0 is

the quadrupole interaction tensor, and V is the electric field gradient (EFG)
tensor.

For a nucleus with I = 1, such as deuterium, there are two resonance
frequencies corresponding to the three energy levels caused by the
quadrupole interaction. The difference between these two frequencies,
observed as quadrupole splittings, is expressed in the LAB frame as
(Sillescu, 1982; Spiess, 1983; Spiess, 1985)

Av= %—e%q—‘-o“—[(%osz 8 -1)- ncos2¢sin® 9], (1-19)

where Vzz = eq (|V | 2|Vy| 2|Vyy|) is the unique principal element of the EFG

tensor,
n=—XX_"1 (1-20)

is the asymmetry factor, ¢ and 0 are the Euler angles that describe the

Q

2
orientation of the EFG to the magnetic field, and E—;Il—— is the quadrupole

coupling constant (QCC).

Unlike the dipolar interaction, often the quadrupolar interaction is
slightly asymmetric. Because the asymmetry is small (n = 0.03-0.05) in
aliphatic hydrocarbon systems, it can be ignored and the unique tensor
element assumed to lie on the internuclear vector. It is therefore reasonable
to set 1} = 0, making equation (1-19)

Av=20CC(3c05" 6-1). (1-21)

If QCC is known, the quadrupole splitting for a specific site serves to
19

orient that C-2H bond with respect to the magnetic field, providing another
structural constraint.
1.5.5 Use of SSNMR Observed Interactions

In this study, isotopic labels are used in the synthesis of gA to allow
for the observation of specific bond orientations with respect to the external
magnetic field, such as 15N-1H and 15N-13C;. This is accomplished through
the use of SSNMR experiments to obtain chemical shifts, chemical shift
tensor orientations and dipolar splittings. Since samples of gA in hydrated
DMPC can be made such that the gA channels are aligned parallel to the
magnetic field, the individual molecular bond orientations can be observed
as a function of dipolar splitting and the chemical shift tensor orientations
can be observed. The entire structure can be solved by piecing together these

orientational constraints.

1.6 Computational Methods

1.6.1 Simulated Annealing
1.6.1.1 General description. An introduction to and application of

simulated annealing is provided in Numerical Recipes in C (Press et al.,
1992). I will give a brief introduction here.

An analogy of simulated annealing to thermodynamics is the way in
which a metal cools or anneals. At high temperatures, the molecules have
high mobility. As the metal cools, this mobility is slowly lost and the
molecules are often able to line themselves up to form a minimum energy
conformation. If the metal is cooled quickly, or quenched, it does not reach
the global minimum but ends up in an amorphous state. The process of
slow cooling allows ample time for molecular redistribution.

The method of simulated annealing (Kirkpatrick et al., 1983) is a

2

technique suitable for large scale optimization problems in which a desired
global minimum is hidden among many local minima. In direct
minimization the system is brought from its initial configuration to a local
minimum by a direct path. This technique often fails to reach the global
conformational minimum. Nature handles minimization differently by
allowing changes in configuration to occur both in uphill and downhill
directions. This is shown by the Boltzmann Probability Distribution:

Prob(E) ~ exp(—-E / kT), (1-22)
where E is the system energy, k is the Boltzmann constant, and T is the
system temperature. This says that a system in thermal equilibrium at
temperature T has its energy probabilistically distributed among all energy
states E. At high T, there exists a high probability for the existence of a high
energy state. At low T, the probability for a high energy state is decreased.
Therefore, the system is allowed to move uphill, but uphill movement
becomes less likely as T decreases.

When a system undergoes a change from E;j to Eg, it does so with a
probability

p=exp[—(E, — E,)/ kT1]. (1-23)

. For Eg < E7 (downhill), p=1 (always allow)

For Eg > E1 (uphill), p < 1 (sometimes allow)
As T decreases, p decreases, so the probability of taking an uphill step is
decreased. This general method, where a downhill step is always accepted
and an uphill step is sometimes accepted based on T, is called the
Metropolis algorithm (Metropolis et al., 1953).

1.6.1.2 Application of the Metropolis algorithm. The application of

simulated annealing to a system requires the following:

21

1. Description of possible system configurations.

2. Generation of random configuration changes.

3. Objective function for E (analog of energy). Minimization of this
parameter is the goal of the procedure.

4. Control parameter T and annealing schedule (how to lower T).

This procedure is demonstrated by the classic Traveling Salesman
problem, in which a salesman is required to visit N cities and return to his
city of origin. Each city is to be visited once and the route is to be as short as
possible. The number of possible solutions is (N-1)!. The computation time
of this problem for an exact solution increases with N as exp(cN), where c¢ is
a constant. This becomes quickly prohibitive as N increases. The objective
function E for this problem has many local minima. The annealing
procedure locates a minimum that, even if not absolute, cannot be
significantly improved upon, while limiting its calculations to scale as a
small power of N.

The application requirements are as follows:

1. Description of possible system configurations.
Number cities i = 1...N with coordinates (xj, yi).
2. Generation of random configuration changes.
a) Reverse a section of path (12345 —514325).
or
b) Move a section of path to another location (12345 — 1423 5).
3. Objective function for E (analog of energy). Minimization of this

parameter is the goal of the procedure.
N+1

E = Total Path Length = 2[(x,. — %) + (- y,.ﬂ)zr
i=l

1

N +1=1 (the path is cyclic)

2

4. Control parameter T and annealing schedule (how to lower T).

In order to get an idea of what the starting T should be and how to
reduce T, generate several random rearrangements of the order of the
cities. From the random rearrangements, calculate an average AE for
random rearrangements. Choose a starting T >> AE. For this
application, T is started at 0.5. Proceed downward (T—0) by 10%
decreases in T. Hold each T for 100N rearrangements or 10N successful
rearrangements, whichever is first. Stop rearrangements when no
further successful rearrangements are found.

The following is a result found for 35 cities. The coordinates for the
cities are assigned randomly in a square of area 1. A plot of the path is
shown in Figure 1.7. The path length is significantly shortened in only 4
seconds of computer time. A complete search of all possible paths would
require 2.95x1038 configurations. A comprehensive search of all
configurations at a rate of 50000 per second (a reasonable number on

current workstations), would require 2x1026 years, which is not feasible.

Order of cities before anneal:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ie 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35

Initial Path Length: 20.68

Order of cities after anneal:
17 21 5 27 24 23 14 22 31 16 15 2 11 25 35
34 7 28 3 20 4 33 8 1 13 26 6 10 19 18
12 32 29 9 30

Final Path Length: 4.55

Before

Figure 1.7: Traveling Salesman Path Before and After Simulated
Annealing. The path before simulated annealing is obviously not
optimized for the shortest path length. After simulated annealing,
however, the path is significantly shortened. :

The application of simulated annealing to gA is accomplished
generally the same way and is described in detail in Chapter 4.
1.6.2 Protein Structure Determination and Refinement

1.6.2.1 Solution NMR. Techniques for the determination and
refinement of protein structures in solution using NMR are well developed.
Distance constraints based on nuclear Overhauser effect intensities and
angle constraints based on coupling constants are used to generate an
ensemble of initial structures and to refine the structures. Knowledge of the
covalent geometry for the protein of study, such as the stereochemistry of its
sidechains, and imposed energy functions describing its geometry are used
in conjunction with the experimental constraints during the refinement
procedure. Methods based on this strategy have received many recent
reviews (Braun, 1987; Altman and Jardetzky, 1989; Clore and Gronenborn,
1989; Wiithrich, 1989; Gippert et al., 1990; Briinger and Karplus, 1991; Clore
and Gronenborn, 1991; Havel, 1991).

p.s

Protein structure determination is usually done in two steps. First, a
set of initial structures is generated that approximately satisfy the covalent
and experimental constraints. Second, an average of the structural
ensemble is refined using the same constraints. The methods used for the
steps are quite different. The initial structure is found by searching wide
regions of conformational space and generating structural ensembles with
random distributions within the imposed constraints. The final structure is
generated by refining initial structures by improving the quality of the fit to
the experimental and covalent constraints.

1.6.2.2 Solid State NMR. Protein structure determination in the solid
state is similar to the method used in solution NMR, but the details are
quite different. While solution NMR uses a large number of constraints to
control the iterative process in determining an ensemble of initial
structures, the SSNMR method described in Chapter 3 of this dissertation
solves the initial structure analytically by using constraints that define the
orientations of the individual peptide planes with respect to the external
magnetic field. Ambiguities in the constraints lead to a set of initial
structures. The initial structures are refined multiple times using the full
set of SSNMR data available for the system and energy functions describing
its geometry, generating a structural ensemble. An average structure is
generated from this ensemble and is refined, producing a final structure.

The development of SSNMR as a structural tool is being pursued by
various research groups. Internuclear distances as structural constraints
(Smith, 1993) can be determined by either rotational resonance (Griffiths
and Grifﬁn', 1993) or by rotational echo double resonance (REDOR) (Gullion

and Schaefer, 1989). These techniques provide quantitative distance

2

measurements as opposed to NOE derived distance constraints in solution
NMR which are qualitative. Orientational constraints are being used as
structural constraints not only as discussed in this dissertation, but also as
constraints on the allowed conformational space in polar angles relative to
the axis of orientation (Opella et al., 1987). This is achieved by determining
the allowed regions (af plots) for individual spin interactions at a
structural unit, such as a peptide plane, and overlapping the regions to
constrain the orientation of the structural unit. These techniques and their
applications provide ample evidence that SSNMR is a valid technique for
structure determination.

1.6.2.3 CHARMM. The program CHARMM (Chemistry at HARvard
Macromolecular Mechanics) (Brooks et al., 1983) is used in this study to
éupply the energy of the system, as described in Chapter 4. The energy is
composed of several terms. Internal energy terms consist of bond lengths,
bond angles, dihedral angles and improper torsions. A Urey-Bradley term
is included to add a distance energy between atoms A and C in an A-B-C
bonded atoms triplet. The improper torsion term is used to maintain
chirality about a tetrahedral extended heavy atom and to maintain
planarity about certain atoms, such as a carbonyl carbon. Non-bonded
interactions consist of van der Waals (VDW) interactions and electrostatic
potentials. Hydrogen bonding is described solely in terms of non-bonded

interactions.

CHAPTER 2
MATERIALS AND METHODS

2.1 Materials

2.1.1 Dimyristoyl Phosphatidylcholine

The oriented samples used in this study were prepared using
dimyristoyl phosphatidylcholine (DMPC) at 99+% purity purchased from
Sigma Chemical Corp. and was used without further purification or
modification. DMPC is used as the lipid in this study due to its acyl chain
length which is well suited to form bilayers having the same thickness as
the gramicidin channel. Samples produced using a mixture of gA and
DMPC have been well characterized (Nicholson et al., 1987; Killian et al.,
1988; Moll and Cross, 1990), and are therefore routinely made.
2.1.2 Gramicidin A

Isotopically labeled L ‘and D amino acids were purchased from
Cambridge Isotope Laboratories. FMOC-L and -D amino acids were
synthesized in our lab for use in peptide synthesis using FMOC N-
hydroxysuccinimide ester by Weidong Hu and Fang Tian. Isotopically
labeled gA samples were synthesized by solid phase peptide synthesis using
FMOC blocking groups on an Applied Biosystems 430A automated peptide
synthesizer (Fields et al., 1989) by Kwun-Chi Lee and Myriam Cotten. The
C-terminus ethanolamine blocking group was added during the cleavage

process to remove the synthesized gA from the resin. Single site isotopically

27

labeled gA was consistently 98% pure after recrystallization as analyzed by
reverse phase HPLC and no further purification was necessary. Double
labeled 15N-13C; gA required purification and was done by reverse phase
HPLC (22 x 250 mm column, C18, 10 micron pore, irregular silica) in a
solution of 85% MeOH and 15% phosphate buffer (Fields et al., 1989).
2.2 Oriented Sample Preparation

Oriented samples of gA in hydrated DMPC bilayers were prepared
based on an earlier method used in this lab (Nicholson et al., 1987). The
method was modified slightly to accommodate larger sample sizes.
Samples containing approximately 30 mg gA in hydrated DMPC bilayers
were prepared by codissolving isotopically labeled gA with DMPC (1:8 molar
ratio) in a 95% benzene / 5% ethanol solvent system (Mai et al., 1993). This
solution is spread on 25 thin glass slips measuring 5 mm X 20 mm and the
slips are vacuum dried. They are then stacked into a square glass tube with
one end sealed and hydrated to approximately 50% by weight. Because of the
known gA solvent history dependence (Killian et al., 1988; LoGrasso et al.,
1988) in which gA forms different conformations in solution based on the
solvents used, the tube is fully sealed and incubated at 40 °C for a minimum
of two weeks, resulting in a sample containing gA channels in fully
hydrated lipid bilayers. The orientation of the channel axis of the gA helix
is parallel to the normal of the glass surface (Fields et al., 1988). The
uniform orientation of the DMPC lipids in the oriented samples is
confirmed by 31P NMR (Moll and Cross, 1990). The orientational mosaic
spread of the sample can be assessed from the resonance lineshapes and
has been shown to be as little as 0.3° (Cross et al., 1992). The resulting

samples are highly stable, sometimes lasting many months, though

2

" repeated use of the sample often leads to degradation.
2.3 NMR Experiments

The experimentally observed orientational constraints used in this
structure determination were acquired using two spectrometers, one built
around a Chemagnetics data acquisition system and an Oxford
Instruments 400/89 magnet, the other a heavily modified IBM/Bruker
200SY spectrometer equipped with a solids package. The 15N-13C; dipolar
splittings were measured on the IBM/Bruker instrument due to the
relatively larger size of the dipolar interaction with respect to chemical shift
at lower field, and the 15N-1H dipolar splittings were measured on the
Chemagnetics instrument due to the superior software for data acquisition.

The experiments were run at room temperature under a constant
stream of room temperature air to keep the sample at constant
temperature. The temperature of the coil region was measured during a
typical experiment using a thermocouple and was found to be
approximately 28 °C.

The 15N 90° pulse length was determined using (15NH4)SO4 by
modifying the pulse length to find the point at which no signal was seen,
indicating a 180° pulse. Half of this time was taken as the 90° pulse length.
The power match for the cross polarization, which is explained in the next
section, was set by changing thé 1H spin lock power to obtain the best signal
and line shape from a dry powder sample containing 15N-acetyl-glycine.
The spectra were 15N chemical shift referenced using a saturated solution
of 15SNH4NO3.

2.3.1 Cross Polarization

The sensitivity of the 19N nucleus is very low due to its low abundance

29

and low gyromagnetic ratio (-2.712 x 107 radians Tesla-1 s-1) relative to 1H
(26.7520 x 107 radians Tesla-1 s-1) (Fuller, 1976). Isotopically labeling the gA
at a single site avoids the low 15N abundance, but does not help avoid the
low gyromagnetic ratio. Magnetization can be transferred, however, from a
relatively high ¥ nucleus such as 1H through a process known as
polarization transfer or cross polarization (Hartmann and Hahn, 1962).
The aim of cross polarization is to detect an NMR signal from a low
sensitivity nucleus S surrounded by high abundance spins I with high
sensitivity. This is accomplished when the Hartmann-Hahn match
condition,

B =vsB’, 2-1)
is met. This says that the strength of the radio frequency generated
magnetic fields at the Larmor frequencies for the I and S spins are adjusted
so that the rate of precession for these rotating frames (in which the frame
of reference rotates about the laboratory Z axis at a frequency equal to
2nvi radians s-1, where v; is the precessional frequency in the Bj field) are
equal. At this point the spin state transition energies for the two spins are
equal and the energy can be transferred from the abundant spin I to the low
sensitivity spin S. Coupling takes place through a dipole-dipole interaction.
The I spins are irradiated with a field B! along X so that the I spin
magnetization is placed along Y. The I spins are then spin locked along Y
for the duration of the magnetization transfer, typically 1 ms. A contact
pulse, also along Y, on the S spins will bring its magnetization along Y. If
the match condition in equation (2-1) is met, the I magnetization will
transfer to the S spins by resonance in the rotating frame. Acquisition of the

NMR signal is done on the S spins while decoupling the I spins. Since the

30

magnetization originates from the I spins, repetitive scans must be
separated by a time dictated by the T; time of the I spins. The cross

polarization pulse sequence is shown in Figure 2.1.

1)2a) 3a)
1H @)
90°x SLy Decouple
2b) 3b)
15N (S) V\,\~—
CPy Acquire
1) Z 2a) Z 3a) Z
1H (D) v 90 X v SLy v
/ My
2b) Z 3b) Z
15N (S) / v CPY. v
X X

Figure 2.1: Cross Polarization. The magnetization from the relatively
abundant I spins is transferred to the S spins. The magnetization of
spin I is initially aligned with the magnetic field as shown in 1). The
application of a 90° pulse along X places the magnetization of spin I
along Y, shown in 2a). 2b) shows the bulk magnetization for spin S
before cross polarization. Cross polarization transfers the
magnetization of spin I to spin S as shown in 3a) and 3b).

31

2.3.2 Cross Polarization Echo

1H (I)
90°y SLy Decouple
4) 5 6
15N (S) V\,w. .N\/\A,\,w
CPy T 180°y " 1 Acquire
4 Z 5 Z 6) Z
15N (cont) - 180°¢ |
__:E_’ Y—> Y’ T > Y’
- — M

Figure 2.2: Cross Polarization Echo. The cross polarization echo pulse
sequence is shown to refocus the magnetization along Y. The vector
diagrams begins with the magnetization along Y as a continuation of
Tigure 2.1. Due to field inhomogeneities and various local
environments, some spins precess faster than others, as shown in 4). A

180° pulse after a time 1 along Y causes the magnetization to refocus,

shown at 5). After an additional time 1t the magnetization is refocused
along Y, as in 6).

Under ideal conditions the CP experiment would be adequate to
observe the free induction decay (FID) (the response of a nuclear spin
system to a radio frequency pulse) of spin S. However, SSNMR uses high
power which can lead to acoustic probe ringing, in which current is still in

the coil after the termination of the pulse sequence. In order to alleviate this

32

problem, a Hahn echo (Hahn, 1950) is used. The Hahn echo allows the spin
magnetization in the rotating frame to dephase in the XY plane and then
refocuses the spin magnetization for the observation of the echo after the
acoustic ringing has stopped. The fact that the spins do not all precess at
precisely the same frequency leads to a loss in phase coherence. If after a
time T a 180° pulse is applied, the spins are flipped and will refocus after
another time 7, as shown in Figure 2.2. A typical value of 1t is 60 ps. At the
point of refocus, the echo can be acquired without the acoustic ringing.

This pulse sequence is used to observe the 15N resonance when it is
dipolar coupled with the 13C; nucleus. The dipolar interaction between the
15N and 13Cj leads to a dipolar splitting of the observed 15N frequency which
gives information about the N-C; bond orientation with respect to the
magnetic field. Sample experimental spectra are shown in Appendix A.1.1.
2.3.3 Separated Local Field

To measure the 15N-1H dipolar splitting a method to reintroduce the
dipolar coupling between the 15N and its bonded 1H while still being able to
decouple for acquisition must be used. The separated local field (SLF)
experiment (Waugh, 1976) is a two dimensional experiment that produces
the 15N chemical shift in the first dimension and the 15N-1H dipolar
splitting in the second dimension. The SLF pulse sequence, shown in
Figure 2.3, is a slight modification of the CPECHO pulse sequence shown in
Figure 2.2.

The SLF pulse sequence uses an evolution time, t1, to vary the time
that the 15N and 1H dipolar coupling is present. At a small t;, little dipolar
coupling occurs. As a result, nearly the full intensity is seen in the

chemical shift peak. As the evolution time is increased, the dipolar

33

interaction time increases and the chemical shift signal intensity
decreases. Over the course of the 16 1D experiments, the signal intensity
oscillates, producing a FID in the second dimension. The 15N-1H dipolar
splitting is obtained by Fourier transform of the second dimension. The
width of the dipolar dimension is 50 kHz since the time increment is 20 us

(1/20 ps). Sample experimental spectra are shown in Appendix A.1.1.

1H (D) t1
90°x SLy Decouple
15 '
N (S) N\M._
CPy T 180°y T Acquire

Figure 2.3: Separated Local Field. The SLF experiment is used to
determine the 15N-1H dipolar splitting. The time t is varied from 2 to

302 ps in steps of 20 ps for a total of 16 one dimensional experiments
using a T value of 360 us. This leads to a dipolar dimensional width of

50 kHz. The dipolar interaction between the 15N and 1H nuclei is
reintroduced as a function of the t; evolution period.

2.4 NMR Data Processing

The experimental NMR spectra were all processed on a Silicon
Graphics Indigo II Extreme using the Felix NMR data processing software
from Biosym Technologies. The CPECHO spectra were processed by first

zero filling by a factor of four, applying an exponential multiplication with

A

50-100 Hz line broadening, Fourier transforming the echo, and applying
phasing as required. The SLF experiments were processed in much the
same way in the first dimension, and the dipolar dimension was processed
by zero filling from 16 to 128 data points and Fourier transforming the FID.
2.5 Molecular Visualization and Analysis

Molecular visualization was required at many stages during this
study and was carried out on a Silicon Graphics Indigo II Extreme using
Insight II from Biosym Technologies. The diplane solutions from the
SSNMR data, as will be discussed in Chapter 3, were assembled into the
initial structure using Insight II. The sidechains were placed on the
backbone and the final structure analyzed using this software. Procheck
(Laskowski et al., 1993) was used to analyze the properties of the final
structure.

2.6 Computational Analysis

The individual (¢, y) torsion angles were calculated from the
experimentally determined 15N-13C; and 15N-1H dipolar splittings using the
program CNFCS (CoNFormation with reduction by Chemical Shift)
developed in this lab. The diplane coordinates were created by using the
diplane direction cosine solutions along with the (¢, y) solutions, both
output from CNFCS, with the program COORDS (Calculate cOORDinateS),
also developed in this lab. The global computational refinement was
performed using the program TORC (TOtal Refinement of Constraints),
developed in this lab. The source code for these programs is listed in
Appendix A.4. All computer work was performed on both a Silicon
Graphics Indigoll Extreme and a Silicon Graphics 4xR8000 Power
Challenge.

CHAPTER 3
DETERMINATION OF THE INITIAL STRUCTURE

3.1 Introduction

The initial structure is determined not by model fitting the data, but
by determining the structure entirely from the experimental data without
using prior knowledge of the global structural characteristics. The
determination of the backbone structure begins with the calculation of the
individual backbone (¢, y) torsion angles from the experimentally
determined 15N-1H and 15N-13C; dipolar splittings. Since the experimental
data is measured as local orientational constraints with respect to an
external reference, the magnetic field, the torsion angles can be determined
locally and individually for each alpha carbon. Due to ambiguities in the
observed dipolar splittings, multiple solutions are determined for each (¢,
y) pair. Using the 15N chemical shifts and Cy-2H quadrupolar splittings as
structural filters reduces the number of possible solutions. Four possible (¢,
V) solutions remain for each alpha carbon, leading to 20+1 initial backbone
structures, where n is the number of alpha carbons. These solutions all
have the same structural motif and differ subtly only in the peptide plane
normal orientations with respect to the channel axis.

This chapter will explain the method for calculating the individual
(¢, y) solutions, the reduction of these solutions using additional

experimental constraints, the pairing of subsequent peptide planes to build

36

the possible initial structures, and the reduction of the 2n+1 possible initial
structures to four characteristic structures. The details of these initial
structures will be discussed and the need for a computational refinement
method introduced.

3.2 Calculation of the Individual Torsion Angles

The method for determining the backbone torsion angle pairs about a
single alpha carbon has been previously described (Brenneman and Cross,
1990; Teng et al., 1991). Recently this method has been modified and is
implemented in the program CNFCS.

The gA channel is oriented in the lipid bilayer such that the helix
axis is parallel to the normal of the lipid surface. The helix axis can then be
aligned parallel to the external magnetic field of the spectrometer by
positioning the sample in the magnetic field so that the glass plates are
perpendicular to the magnetic field vector. Aligning the helix axis with
respect to the magnetic field allows for the determination of individual spin
interaction tensor orientations with respect to the magnetic field. Once the
orientations of the tensors are known with respect to the molecular frame,
the orientation of the molecular frame with respect to the magnetic field
can be determined (Mai et al., 1993). The relative orientations of the
individual molecular frames can then be used to calculate the initial

backbone torsion angles about individual alpha carbons (Teng et al., 1991).

3.2.1 Determination of Possible Peptide Plane Orientations
As a first step in the determination of the (¢,) solutions, the peptide

plane linkage (®) is assumed to be 180°. This causes the six backbone atoms
on either side of the peptide bond to lie in a plane. Both the carbonyl oxygen

and the amide proton are considered backbone atoms since the orientation

37

of these atoms with respect to the main chain atoms cannot change without
a modification in the peptide geometry. By the same reasoning, the Hy, and
Cp atoms are also considered backbone atoms and, therefore, data from
these sites can be used as additional backbone structural constraints. Each
peptide plane can be defined by two intersecting vectors, the N-H and N-C;

bonds, as shown in Figure 3.1.

% - \
VNG IR ~ 9=
N <~ “f_ - 7 02%¢ \ ©11=Chb

Y o 15N/
< RV RN

\ - Cq,

.COC\ \/ -
. ~ _ \ PR
\ ~ - / \/ _ - \
C M-

0

N
H C B
VINH

Figure 3.1: Peptide Plane Definition. The peptide plane is defined by
the N-C; and N-H bonds. Since these two vectors intersect at the

nitrogen, they are sufficient to define the orientation of the plane. The
dipolar interactions that define the N-C; and N-H bond orientations

are shown, as is the 15N chemical shift tensor and the C-2H
quadrupolar interaction. Subsequent peptide planes are linked by
taking advantage of the tetrahedral geometry about the shared alpha
carbon.

3.2.1.1 Experimental data used. The determination of the bond

orientations is accomplished by the incorporation of isotopic labels into gA;
38

15N-1H for the determination of the N-H bond orientation and 15N-13C; for
the determination of the N-C; bond orientation, as explained in Chapter 2.3.
Experimental data for multiple gA sites is shown in Appendix A.1.1. For
those 15N-13C; spectra that contain a single peak the dipolar splitting is
obtained by observing the shift of the single peak from the known chemical
shift of the 15N only labeled sample. The unique axis of the dipolar
interaction is the internuclear vector, so an observed dipolar splitting
serves to orient this vector or bond with respect to the external magnetic
field.
3.2.1.2 Bond orientations and experimental error. The 15N-1H and
15N-13C; dipolar splittings and the 15N chemical shift is theoretically
redundant, as shown by the following system of equations (Teng et al.,
1991):

Ocs = 011052011 + 022c052029 + 633c052033 (3-1)

cos033 = (sinfp / sin@HNC)(cosONH - cosONC cosOUNC)
+ cosONC cospD (3-2)

cos011 = (cosBp / sinONC)(cosONH - cosONC cosOHNC)
— cosONC sinfp (3-3)
cosB22 = (1 - cos2011 - c0s2033) (3-4)
where o¢s is the observed chemical shift, oxx is the magnitude of the XX
tensor element, 0xx is the orientation of the XX tensor element with respect
to the magnetic field, Bp is the orientation of the tensor with respect to the

N-C1 axis of the molecular frame and 6gNc is the H-N-C; bond angle.

Table 3.1: Calculated versus Experimental 15N-13C; Dipolar
Splittings. Differences in the actual peptide geometry are shown
when the 15N-13C; dipolar splittings are calculated using the 15N
chemical shifts and the 15N-1H dipolar splittings.

TRelaxation effects have compromised our ability to obtain 15N-13C;
dipolar splitting data for this site. The value shown is determined
from the existing data and is used only in the determination of the
initial structure.

Residue | Experimental Orientation Calculated Orientation
(kHz) (degrees) (kHz) (degrees)
Val; 0.463 48,63 0.988 40,74
Glys 0.910 41,72 0.804 42,70
Alag 0.670 44,67 0.815 42,70
Leuy 0.820 42,70 0.724 44, 68
Alas 0.572 46, 65 0.913 41,72
Valg 0.626 45, 66 0.369 49,61
Valy 0.519 47,64 0.819 42,70
Valg 0.702 44,67 0.413 48, 62
Trpo 0.487 47,63 0.957 40,73
Leujg 0.7007 44,67 0.018 54, 55
Trp11 0.365 49, 61 0.114 53, 57
Leujs 0.779 43,69 0.760 43,69
Trpis 0.454 48, 62 0.568 46, 65
Leuyy 0.657 45,66 0.475 47,63
Trpis 0.507 47,63 0.560 46,64

Equation (3-1) says that the chemical shift is a function of the
magnitudes of the chemical shift tensor elements and the orientation of the
chemical shift tensor with respect to the magnetic field. Equations (3-2), (3-
3) and (3-4) solve for the orientations of the tensor elements using the N-H
and N-Cj bond orientations. If the observed chemical shift is known and the
chemical shift tensor characterized, then with knowledge of either the
15N-1H or 15N-13C; dipolar splitting, the unknown dipolar splitting can be

calculated, as shown in Table 3.1. However, the error associated with the
40

observables and the imperfectly characterized dynamics results in typical
errors of a few degrees and as much as 12°. As a result, the observation of

15N-1H and 15N-13C; dipolar splittings as well as the 15N chemical shift has

been useful for the structural characterization.

3 lllllllllll'lllll'Illllllllllllllll

0.6 +0.1 kHz

Dipolar Splitting (kHz)

_2 IllllllllLllLllll‘Illllllllllllllll

0 30 60 90 120 150 180
Bond Orientation (degrees)

Figure 3.2: 15N-13Cy Dipolar Splitting as a Function of N-C; Bond

Orientation. The range of experimental error associated with a single
observable may be large in the dipolar splitting dimension, but results
in only a small range of possible bond orientations.

Table 3.1 illustrates the high resolution of these constraints. Since
the experimentally determined bond orientations with respect to the
magnetic field are all within 41°-49° or 61°-72°, which are both in regions
of steep slope in a plot of dipolar splitting versus bond orientation (Figure

3.2). The range of experimental error about an observed splitting defines a

41

very small range of possible bond orientations. For example, an 15N-13C;
dipolar splitting of 0.600 typically has an error of £0.1 kHz, which leads to a
possible bond orientation range of onl‘y 47°-44°,

3.2.1.3 Bond orientation ambiguities. The nature of the dipolar
interaction is such that the determined individual bond orientations are not
unique. This orientational ambiguity arises from Avops = vjj (3c0s20 - 1) in
that the sign of cos® is undetermined. Furthermore, the sign of Avyps is
unknown unless the magnitude of Aveps is greater than v),. In the case of
gA, the N-C1 Avops is always less than v), while the N-H Avgpg is always
greater than v). As a result, there are four possible N-C; orientations and
only two possible N-H orientations. This leads to eight possible plane
orientations based on the dipolar splitting data alone.

If the 15N chemical' shift tensor is oriented with respect to the
molecular frame, the 15N chemical shift can be used as an additional
orientational constraint for the individual peptide plane orientations. Not
only does the 15N chemical shift tensor provide an orientational constraint,
the calculation of the observed chemical shift from the plane orientation
introduces information about the covalent geometry of the peptide plane
through the HNC; bond angle (equation (3-2)). N-H and N-C orientation
solutions must therefore meet this constraint. It can be shown (Brenneman
et al., unpublished results) that the introduction of the 156N chemical shift
constraint reduces the number of possible peptide plane orientations by a
factor of four, leaving two possible orientations for each plane.

3.2.2 Linking the Peptide Planes
Once the independent orientations of two adjacent peptide planes are

determined with respect to the magnetic field, the relative orientations of

42

the two peptide planes can be defined in terms of the ¢ and y torsion angles
about the linking alpha carbon (Figure 3.1). Two orientations are possible
for each peptide plane, which leads to four possible diplane solutions
consistent with the tetrahedral geometry about the linking alpha carbon.

Of the four diplane solutions, two are structurally identical to the
other two, differing only in the orientation with respect to the XY plane. In
gramicidin, the channel exists as a head to head dimer. The upper and
lower monomers are identical with respect to their orientation to the
magnetic field, but point in different directions. A diplane in the upper
monomer is identical to the same diplane in the lower monomer after a 180°
rotation about a vector in the XY plane. As a result, only two diplane
solutions need to be considered.

With the introduction of the above constraints on the possible peptide
plane orientations and the diplane combinations, a set of possible (¢, y)
torsion angles is generated for the diplane (Teng et al., 1991). Each diplane
combination is associated with eight possible (¢, y) torsion angles
(Brenneman et al., unpublished results), resulting from sign ambiguities
in the spherical angles used to calculate the torsion angles from the diplane
direction cosines. In the case of gA, two possible diplane combinations exist
for each alpha carbon, resulting in sixteen possible (¢, y) torsion angle
pairs, as shown in Table 3.2.

The individual (¢, y) solutions are named by first stating the direction
cosine number and then the (¢, y) number. The letter g is added at the
beginning of each name to designate gramicidin. For example, the (91°, 73°)
(0, y) solution shown in Table 3.2 would be named gl1 and the (-121°, 121°)

solution would be named g28.

Table 3.2: Possible Alag Diplane Torsion Angle Pairs. The two
possible diplane direction cosine solutions lead to sixteen possible (¢,
y) torsion angle pairs. The number of diplane direction cosine

solutions, and hence the number of possible (¢, y) torsion angle pairs,
is the same for each alpha carbon along the gA backbone.

Direction Cosines

Plane 1 Plane 2
15N-1H 15N-13C 15N-1H 15N-13C
gl 0.9871 -0.3970 0.9160 -0.7405
g2 0.9871 -0.3970 -0.9160 0.7405

Combination 1 Torsion Angle Solutions
gll gl2 gl3 gld gl5 gl6 gl7 gl8§
o° 91 91 91 91 8 & 82 -82
v° 73 41 -73 41 73 41 -73 41

Combination 2 Torsion Angle Solutions

g2l g22 g23 g24 g25 g26 g27 28
o 180 130 130 -130 121 121 121 121

ye| -163 -121 153 21 153 -121 153 121

3.2.3 Reduction of the Possible Torsion Angle Solutions

In order to determine the initial structure of gA, the number of
possible (¢, y) torsion angles about each alpha carbon must be reduced. To
do this a vector outside of the peptide plane is needed. Co-2H quadrupolar
splittings have been measured (Lee and Cross, 1994; Lee et al., 1995) and
are well suited for this purpose. The Alag Cy-2H quadrupolar splitting has
been measured at 195 kHz (Lee et al., 1995). From the sixteen possible (¢, y)
torsion angles, shown in Figure 3.3, for a single alpha carbon, only four,

the g23, g24, g27 and g28 solutions, have calculated Cy-2H quadrupolar

4

side view

top view

side view

top view

side view

top view

side view

top view

o
BN
A

Possible Solutions

Figure 3.3: Possible Alag (¢, y) Solutions. All sixteen possible solutions
consistent with the dipolar and chemical shift constraints for a single
alpha carbon are shown. Only four of the solutions predict the Cy-2H

quadrupolar splitting consistent with the observed data and are shown
with a white background. The remaining four solutions are very
similar, but the orientations of the peptide planes with respect to the
channel axis differ.

splittings about the central alpha carbon consistent with the observed data

(Table 3.3). The upper eight solutions in Figure 3.3 have the C-O bonds in

45

the same direction while the alternating C-O bond orientations in the lower
eight solutions are consistent with P-type structures. The Cy-2H
quadrupolar splittings provide an experimental means to reduce the
number of possible solutions, and the C-O bond directions in the four

possible solutions confirm the B-type structural motif.

Table 3.3: Experimental Cy-2H Quadrupolar Splittings Compared
with the Sixteen Possible Alag (¢,) Solutions. The quadrupolar
splittings are calculated as Avgpg = 0.75 QCC (8cos20 - 1), where QCC
(160.0 for this site) is the quadrupole coupling constant, Avgps is the

observed quadrupolar splitting and 6 is the angle between the
magnetic field and the quadrupolar interaction axis, in this case the
Cq-H bond.
TThese solutions are consistent with the observed quadrupolar
splittings.

Solution Calculated Calculated - Observed
Quadrupolar Splitting Quadrupolar Splittings
(kHz) (bond orientation) (kHz)

gll 25 (59°) 170

gl2 25 (59°) 170

gl3 139 (148°) 56

gl4 139 (148°) 56

gl5 25 (59°) 170

glé 25 (59°) 170

gl7 139 (148°) 56

gl18 139 (148°) 56

g21 111 (81°) 84

g22 111(81°) 84

g23t 206 (162°) 11

g24t 206 (162°) 11

225 111 (81°) 8

g26 111 (81°) 8

g27t 206 (162°) n

g28t 206 (162°) 11

3.2.4 Characteristics of the Remaining Diplanes

The four remaining diplanes are very similar. They are based on a
single diplane direction cosine solution, and therefore differ only in the
single plane normal orientations with respect to the magnetic field, as
shown in the top views in Figure 3.3. The first plane in the diplanes is
identical in the g23 and g24 solutions, as it is in the g27 and g28 solutions.
The g23 and g27 solutions have identical second planes, as do the g24 and
g28 solutions. All four of the solutions are right handed and B-helical. A
very interesting aspect of these solutions is the orientations of the C-O bonds
with respect to the channel. The g23 and g28 solutions have C-O
orientations that alternate in and out of the channel, while the g24 and g27
solutions have the C-O orientations either all out or all in. The sidechain
orientation is identical in the four structures, as shown in the side views in
Figure 3.3. This reflects the fact that the calculated Cy-2H quadrupolar
splittings are identical in these solutions.

3.3 Building the Initial Backbone Structure

The initial structure is built by combining the possible diplane
solutions for each alpha carbon with subsequent diplanes. The method by
which the diplanes are linked to form an initial backbone structure is
shown in Figure 3.4. One diplane shares a peptide plane with the next
diplane. Only the diplanes that share an identically oriented peptide plane
can overlap. In other words, for the (¢, y) solution for residue i to be
matched with a (¢, y) solution for residue i+1 it is necessary that the shared
peptide plane joining residues i and i+1 be identical for the two diplane
solutions. This reduces the number of possible initial backbone structures

from 40 to 20+1. Each alpha carbon produces g23, g24, g27 and g28 torsion

47

angle solutions. The solutions pair such that g23; pairs with either g27;,1 or
g28i,1, g24; pairs with either g23;.1 or g24;,1, g27; pairs with either g27;.1
or g28;,1, and g28; pairs with either g23;,; or g24;,1. For the fifteen amino
acids in gA, this leads to 65,536 (20+1) initial structures.

Valy Glyz Valy Glya
Val; g23 [JY Val; g28
+ +
Valz Glys / 4 .
Glyg 228 ¢_\

Valz Gly2 Val Glys

2328 2823

Figure 3.4: Peptide Plane Overlap. Although four (¢, y) solutions exist

about each alpha carbon, only 2r+1 structures are possible. This is
shown here in the method by which the diplanes are overlapped using
shared diplanes for subsequent alpha carbons. Only those diplanes
that share a plane with identical orientations can be overlapped to
form a triplane structure. Solid arrows indicate identical orientations
and gray arrows a mismatch.

The full array of initial structures all have the same structural motif
and all display the same intramolecular hydrogen bonding pattern. The

only difference between them is a sign ambiguity in the orientation of the
48

peptide plane normal with respect to the channel axis. Based on this
observation, four characteristic initial structures are all that need to be
considered; g2328 has the carbonyls of the peptide planes oriented in such a
way that they alternate in and out of the channel, g2424 has the carbonyls

B0 5O

side side

2328 g2424
side side

g2727 g2823

Figure 3.5: The Four Initial Backbone Structures. These four initial
structures represent the orientational variability in the individual
peptide plane orientations with respect to the channel axis. All
remaining initial structures are simply permutations of the peptide
plane orientations, not changes in the general structure. All initial

structures are right handed P-helices with the intramolecular
hydrogen bonding pattern clearly defined.

49

all out, g2727 has the carbonyls all in, and g2823 has the carbonyls
alternating out and in. The naming scheme follows the one described
previously, with the first two numbers describing the diplane on either side
of residue i and the second two numbers describing the diplane on either
side of residue i+1. The four initial backbone structures are shown in
Figure 3.5. They are all right-handed B-helices and have approximately 6.6
residues per turn and a helical pitch of 4.8 A. Since they were built with the
same data, they all match the observed N-H and N-C; bond orientations and
are reasonably close to the observed 15N chemical shifts and Cqy-2H
quadrupolar splittings. The intramolecular hydrogen bonds are clearly
identifiable. Making full use of the experimental data and optimizing the
hydrogen bonds is discussed in Chapter 4.
3.4 Addition of Sidechains to the Backbone

Although the determination of the sidechain structures did not fall
within my research, the process by which they were obtained is described
here in order to give an understanding of the method by which the entire
initial structure is determined. The sidechain torsion angles are calculated
using experimentally determined C-2H quadrupolar splittings and 15N
constraints for the Trp indole rings from uniformly aligned samples. The
quadrupolar splittings define the orientation of the C-H bonds with respect
to the magnetic field and can be used to orient the sidechains with respect to
the channel axis and peptide backbone resulting in the definition of the
sidechain torsion angles. As stated earlier, the Co-Cpg bond is part of the

initial backbone structure. The four initial structures, while containing

‘different peptide plane orientations with respect to the channel axis, have

identical Cy-H and hence Cy-Cp orientations. This means that the existence

50

of four base initial structures does not lead to four separate sidechain
structure solutions. The sidechain torsion angles are systematically varied
along with a narrow range of Co-Cp consistent with the backbone structure
and an appropriate error bar. The rmsd between the observed and
calculated quadrupolar splittings is used as a means by which the
acceptable conformational states of the sidechain are determined. If
multiple conformational states are shown at a single Bg polar angle (Lee et
al., 1995), the solution that falls near a rotameric state is accepted. The Val;
and Valy sidechain data represents fast exchange between rotameric states
(Lee et al., 1995). These sidechains are the only ones that show large
amplitude local motions. Their static orientations are therefore represented
by modified data such that only the dominant rotameric state is considered.
The final step in the initial structure determination is the joining of
the backbone and sidechain structures. Since the backbone and the
sidechains share C,-Cp bond vectors, the sidechains can be placed directly
on the backbone while maintaining their relative orientations with respect
to the channel axis. Since the Cy-Cp bonds are the start of the various
sidechains, the sidechains can be added to the initial backbone structure by
continuing the covalent geometry of the individual sidechains from the beta
carbon. Attaching the sidechains to the initial backbone structures leads to
global initial structures. Since the sidechain orientations are determined
independent of each other, interactions between the sidechains are not
considered at this stage. Consequently, the initial structures do show VDW

violations, and are discussed in Chapter 4.

51

3.5 Discussion

The method presented here has been shown to be successful in the
determination of an entire initial protein structure in a membrane
environment. The resulting structure is at a resolution adequate to define
the peptide fold, identify the intramolecular hydrogen bonds and define the
sidechain orientations. The ability of this method to obtain such a well
defined structure with the limited amount of structural data is due to the
quality of the orientational constraints obtained with SSNMR. The
orientational constraints are at a very high precision (Hu et al., 1993) and
result in highly constrained peptide plane orientations. The absolute nature
of the orientational constraints (i.e. the orientation of the molecular frame
to the laboratory-fixed frame), as opposed to relative constraints such as
distance measurements, allow for the determination of individual peptide
plane orientations with respect to the external magnetic field without
depending upon the entire structural solution. Each structural unit, the
peptide plane, methylenes, methyls and indoles, are independent of the rest
of the structure.

Since the initial structure is built using local orientational
constraints, errors in the peptide plane orientations do not accumulate z;s
the structure is sequentially assembled. This approach is fully capable of
elucidating polypeptide secondary structure and, because the errors are
small, tertiary structure should be effectively constrained as well. This
result demonstrates the ability of SSNMR derived orientational constraints
to accurately define three dimensional polypeptide structure.

The existence of four initial structures, the intramolecular hydrogen

bonds, the sidechain VDW interactions, and the experimental data not used

52

in the determination of the initial structure are all characteristics of the
initial structure that demonstrate a need for a computational refinement

procedure. Such a procedure is discussed in Chapter 4.

CHAPTER 4
COMPUTATIONAL REFINEMENT

4.1 Introduction

While solid state nuclear magnetic resonance spectroscopy (SSNMR)
methods have been demonstrated for obtaining three dimensional
structures of membrane bound polypeptides (Cross and Opella, 1983; Opella
et al., 1987; Ketchem et al., 1993), computational refinement methods are
needed for optimally utilizing these constraints in such a molecular
environment. Methods for structural determination and refinement of
macromolecules in solution have extensively evolved (Clore et al., 1985;
Havel and Wiithrich, 1985; Briinger et al., 1986), but the nature of the
constraints obtained for membrane proteins are such that a new
refinement procedure must be developed. Described here is such a
procedure that has the ability to optimize the structure of a membrane
protein solved by SSNMR in order to best represent the experimental data
and determine its high-resolution structure.

Chapter 3 introduced the means by which the initial gA structure is
obtained. The initial backbone structure has many positive attributes. The
use of local orientational constraints in the determination of the initial
backbone structure leads to a structure whose local and intermediate range
interactions are well defined. Even though the nature of the data is such

that the constraints are local to the individual peptide planes, the initial

54

backbone structure displays a high level of intermediate range
conformational consistency. This is evident in that the secondary structure
of the molecule is shown as a right handed B-helix and that the
intramolecular hydrogen bonding pattern is clearly identified throughout
the structure. The initial backbone structure is therefore in an appropriate
starting position from which to consider further experimental constraints
and a computational refinement protocol. Moreover, computational
refinement is necessary in order to join the initial backbone and sidechain
structures while incorporating all of the structural data and minimizing
the structural energy.

Chapter 3 describes four initial structures that represent the
extremes of conformational space for the possible initial structures. This
chapter describes the computational refinement procedure used to refine
these structures. The four base initial structures are all used as starting
structures for the refinement procedure in Chapter 5 for determining the
final structure. In this chapter the procedure using a single initial
structure, g2328, is described.

4.1.1 General Strategy

The goal is to determine the three-dimensional structure of the
channel that encompasses all the available data and to relax the covalent
geometry used in the determination of the initial structure. However, when
all data are weighted equally in the structure determination, the situation
corresponds to a complex multidimensional optimization problem. The
strategy for refining the structure involves setting up a generalized global
penalty function, incorporating all available information extracted from

SSNMR and other chemical information about the local geometries and

55

energies of polypeptides. The refined structure is obtained from a
geometrical search guided by minimizing this global penalty function. To
perform the minimization in such a high-dimensional configurational
space, an effective computational technique called simulated annealing is
used (Metropolis et al., 1953; Kirkpatrick et al., 1983). Modifications in the
structure are made by allowing the complete geometry of the polypeptide to
vary. During this structural modification, the penalty function incorporates
all available experimental data describing the backbone and sidechains, the
intramolecular hydrogen bond distances and the full CHARMM empirical
energy function.

4.1.2 Characteristics of the Initial Structure Indicating a Need for

Refinement

4.1.2.1 Consideration of the experimental structural data. While the
initial backbone structure defines the peptide fold, identifies the
intramolecular hydrogen bonds and defines the sidechain orientations
relative to the backbone, it does so by using a subset of the SSNMR data that
has been acquired. The torsion angles for the backbone structure are
calculated solely from the 15N-1H and 15N-13C; dipolar splittings, without
consideration of the 15N and 13Cj chemical shifts or the Cy-2H quadrupolar
splittings other than as structural filters. Since the backbone structure is
built using the dipolar splitting data, the structure meets this data. The
calculation of all the acquired data from the initial structure shows that
minor modifications in the initial structure are necessary in order to move
the structure to within the experimental error of the observed data.

The sidechain structures are determined by making full use of the

observed C-2H data for each individual sidechain. However, sidechain

56

torsion angles are determined relative to the backbone structure and,
therefore, changes in the backbone structure will cause changes in the
sidechain torsion angles to achieve the same C-2H bond orientations with
respect to the magnetic field. Also, the tryptophan indole 15N chemical
shifts and 15N-1H dipolar splittings have been observed (Hu et al., 1993) and
are included in the refinement to constrain the tryptophan orientations.
4.1.2.2 Consideration of structural aspects. Further aspects of the
initial structure indicate that structural modifications are necessary in
order to achieve an energetically reasonable global structure. The
intramolecular backbone hydrogen bonds are clearly identified in the initial
structure, but do not exhibit optimal hydrogen bond characteristics (Figure
4.1). Also, the sidechains are initially considered as independent local
structures, so when they are included as extensions of the backbone
structure, VDW overlap becomes evident between some of the sidechains
(Figure 4.1). Another aspect of the initial structure is the assumption that
the peptide linkage is planar (o torsion angle = 180°). Preliminary
experimental results suggest that a significant deviation from planarity
exists for many of the peptide linkages. Analysis of the data calculated from
the initial structure also indicates that deviations from planarity in the
peptide linkages must be introduced in order to bring the structure within
experimental error of all the observed SSNMR data. Another assumption in
the determination of the initial structure is a static, identical geometry for
the bond lengths and bond angles across all amino acid types. Analysis of
various high resolution structures (Engh and Huber, 1991) indicates that
the atomic geometry must be relaxed. Also, the gA channel exists as a head

to head dimer. Interactions between the upper and lower monomers of the

57

dimer must be considered in the refinement.

Hydrogen Bonds VDW Contacts

Initial S
) >\/L
Leuy

\{au/mk(
Refined . ! :
>\>\ '
Tr
Leuy Valg P9

Figure 4.1: Hydrogen Bonds and VDW Interactions. An example of the
hydrogen bonds and VDW interactions before and after computational
refinement are shown. The initial backbone structure identifies the
intramolecular hydrogen bonds and the sidechain orientations.
Refinement is necessary in order to optimize these interactions.

It is evident that a suitable starting structure has been found, but
computational refinement is necessary in order to meet the wealth of
experimental data, to optimize the hydrogen bonds and VDW interactions,
and to remove some of the assumptions made in calculating the initial

structure.

4.2 Structural Refinement Using Simulated Annealing
4.2.1 Application of Simulated Annealing

The application of simulated annealing to this global optimization

58

problem requires a definition for the system configuration, a method by
which the configuration is varied, and a penalty function by which the
structural variations are controlled. In this case, the system configuration
is defined as the atomic coordinates of the peptide, from which a description
of the structure can be obtained. Many methods for introducing structural
variations exist, such as changes in the torsion angles or variations in the
individual atomic coordinates themselves. A penalty function for
controlling the structural variations is required. The primary focus of the
penalty function is to refine the structure such that the experimental
observations are met. To this end, the penalty function is composed
primarily of the experimental data. Since direct modification of the
individual atomic coordinates is one of the methods used for structural
modification, functions that describe the atomic interactions are needed
and must be included in the penalty function along with the experimental
data.
4.2.2 Preparation of the Initial Structure

As stated earlier, the initial structures exhibit steric VDW contacts to
a degree requiring structural modification. The VDW interactions for the
leucine sidechains cause a substantiél increase in the structural energy.
In order to alleviate the worst of the bad contacts, the Leujg, Leuj2 and
Leujq sidechains and the ethanolamine were energy minimized using 250
steps of Adopted Basis Newton-Raphson (Brooks et al., 1983) minimization
within CHARMM. The orientational constraints for the resulting
minimized sidechains were calculated and compared to experimental data.
These structures were found to be in an acceptable orientation from which

to begin the refinement procedure.

4.2.3 Structural Modification Strategy

Structural modification using both atom and torsional moves is
required. Atom moves effectively modify the local structure and torsional
moves efficiently search the conformational space. Even with a high
diffusion parameter and a high starting temperature, atom moves alone
are inhibited by the high energy contribution to the penalty resulting from
VDW interactions. Including compensating and tunneling peptide plane
moves along with atom moves allows for structural changes that search the
conformational space defined by the range of initial structures discussed in

Chapter 3.

H ! ~

)’z\ﬁ%\

o)

Figure 4.2: Compensating Peptide Plane Moves. By modifying the y;

torsion angle the same magnitude as the ¢;4+1 torsion angle, but in the

opposite direction, the peptide plane orientation alone is modified
without significant modification of the rest of the structure. By using
this as one of the types of moves during the refinement procedure, the
conformational space defined in the vicinity of the starting structure is
searched.

4.2.3.1 Compensating moves. Compensating moves (Peticolas and
Kurtz, 1980), illustrated in Figure 4.2, are performed by first choosing a
random backbone ¢ or y torsion angle for modification. The degree of
modification is chosen randomly in the range of -3.0° to +3.0°. The total
change in an individual peptide plane is not constrained to fall within the
defined limit, however, since a single plane may be chosen multiple times
during a refinement. The compensating move is implemented by moving
the chosen torsion angle the chosen amount and then moving the
compensating torsion angle the same amount in the opposite direction.
This has the affect of moving the peptide plane as a unit and thereby
providing a means by which the peptide plane conformational space is
readily searched without greatly distorting the helical and energetic

parameters.

®oo

Channel Axis

Peptide Plane Flip

Figure 4.3: Tunneling Peptide Plane Moves. As in compensating
moves, the peptide plane can be altered with respect to the channel
axis without significantly affecting the rest of the structure. In order to
search both possible orientations of the peptide plane normal with
respect to the channel axis during refinement, tunneling moves are
used to flip the peptide plane. The magnitude of the compensating
move used is calculated from the orientation of the carbonyl bond with
respect to the channel axis.

61

4.2.3.2 Tunneling moves. Tunneling moves are designed to search
the conformational space that is most consistent with the experimental
data. A random peptide plane is chosen and it is moved so that the sign of
cos, the angle of the normal to the peptide plane formed by Cy-C=0 with
respect to Z, is changed. Like the compensating moves this involves
simultaneous changes to ¢; and ;.1 of opposite magnitudes.

While compensating and tunneling moves are used as a means for
moving out of local minima in the peptide plane orientations, they are
primarily used to sample the peptide plane conformational space defined by
the initial structures described in Chapter 3. This allows the refinement
procedure to produce a single final structure while starting from each of
the four base initial structures.

4.2.3.3 Atom moves. Atom moves are central to the refinement
procedure. While the peptide plane moves search the conformational space
defined by the initial structures, atom moves are responsible for relaxing
the atomic geometry and minimizing the global penalty. The Cartesian
coordinates are altered by introducing random displacements for each
spatial dimension in either the positive or negative direction. By using a
relatively small diffusion parameter, 0.0005 A, as the magnitude within
which the atoms move in each dimension, atom moves search a small
conformation space. A result of the use of atom moves is that a precise
structural agreement to the experimental data can be found while at the
same time satisfying the constraints on the peptide geometry.

4.2.4 Penalty Function
The penalty function used to control the structural refinement is the

sum of the structural penalties plus the energy.

62

M
Total Penalty = ' (A, - Structural Penalty,) + A - Energy (4-1)

i=1
where M is the number of structural penalties and A is a scaling factor. The

individual structural penalties are calculated as:

Structural Penalty = il Calculated - Observed \'
“= 2\ Experimental Error)’

(4-2)

where N is the number of measurements of a specific data type.

The use of the experimental error in the definition of the total penalty
serves several purposes. One use is to equate the various data types used in
the penalty, as shown in Figure 4.4. The data originates from several
different observations, such as the chemical shift frequency and
quadrupolar splittings. These different data types are associated with
different observed magnitudes and are therefore difficult to equate directly.
Each experimental error is of a magnitude relative to the observed
interaction size and, therefore, division by the error has the result of both
scaling the different data types so that they contribute equally to the total
penalty and making the penalty for the individual data types
dimensionless. The penalty functions resulting from various data types
indicate that the different penalties are of equal magnitude as a function of
the error. Also, it is important to have the ability to define separate error
values within a particular data type, since experimental error may vary
from site to site depending on the quality of the data. Incorporating the
error into the penalty function allows for the appropriate quality of the
structural constraint during the refinement procedure, as shown in Figure

4.5.

15N Chemical Shift 15N-1H Dipolar Splitting

5 r 5

4 4

§’ 3 ::_3‘, 3

g 2 g 2

oyl A1
0 | Brror |, 0 | Brror |
188 198 208 17 21 25
Calculated Value Calculated Value

Figure 4.4: Penalty Function with Different Data Types. Even though
the different contributors to the penalty originate from different
interactions, the individual penalties generated from them as a
function of deviation from experimental error are identical. This serves
to equate the various data types so that no one interaction has undue
influence on the refinement.

5 15N Chemical Shift 5 15N Chemical Shift
4 4F .
3\ 3 jg: 3F b
g 2 g 21 '
Al A1k .
0 E ’ or
e . e 27T
188 198 208 188 198 208
Calculated Value Calculated Value

Figure 4.5: Penalty as a Function of Experimental Error. The
experimental error used for a particular observation has an effect on
the penalty for that site. Shown here are two different penalty plots for
the same observation. The difference between them is the value of the
experimental error used to calculate the penalty. The smaller the
error, the faster the penalty increases as the structure deviates from
the observed value.

4.2.5 Structural Constraints Used

The constraints imposed on the structure during refinement are
fifteen 15N chemical shifts, two 13C1 chemical shifts, fourteen 15N-13C,
dipolar splittings, fifteen 15N-1H dipolar splittings, twelve Co-2H
quadrupolar splittings, fifty-four C-2H quadrupolar splittings, four indole
15N chemical shifts, four indole 15N-1H dipolar splittings, ten N-O and ten
H-O hydrogen bond distances, and the energy, for a total of one hundred
and forty-one constraints. Appendix A.1.2 lists the individual experimental
constraints.

The 15N and 13C; chemical shift tensors are characterized from
unoriented samples so that the magnitudes of the tensor elements and the
orientation of the tensor with respect to the molecular frame can be
determined (Mai et al., 1993). The chemical shifts observed from oriented
samples are compared to chemical shifts calculated using the molecular
coordinates and the tensor characteristics. A change in the orientation of
the atomic coordinates leads to a change in the calculated chemical shifts
and a resultant change in the penalty.

The 15N-1H and 15N-13C; dipolar splittings and the 2H quadrupolar
splittings are observed in oriented samples and reflect the orientation of the
unique interaction tensor element, the internuclear vector, with respect to
the external magnetic field. The magnitude of the dipolar interaction, vy, is
calculated as described in Chapter 1, whereas the magnitude of the
quadrupolar interaction, QCC, is experimentally defined from model
compound studies. The dipolar and quadrupolar splittings can be
calculated from the atomic coordinates and compared to the observed

splittings during refinement.

The initial structure identifies the intramolecular hydrogen bonds.
The hydrogen bonds are therefore included as direct contributions to the
penalty function as is routinely done in structural refinements from
solution NMR (Case and Wright, 1993; Logan et al., 1994). During the
refinement the internuclear distances associated with the intramolecular
hydrogen bonds are calculated and compared to accepted H-O and N-O
internuclear distances for B-sheet structures with values of 1.96 + 0.3 A and
2.91 + 0.3 A, respectively (Jeffrey and Saenger, 1994). The large range of
acceptable distance values serves to constrain the hydrogen bonding
without distorting the final structure.

The all-atoms PARAM22 (Mackerell et al., 1992) version of the force
field of CHARMM was used to describe the internal energy (bonds, angles,
dihedrals), as well as the non-bonded interactions (VDW and
electrostatics). The IMAGE facility of CHARMM was used to impose the
dimer symmetry of the gramicidin channel about X, and the MMFP facility
was used to impose the channel axis along the Z axis of the coordinate
system. The VDW and electrostatic non-bonded interactions were
calculated on the basis of a group-based pair list. The interactions were
smoothly truncated at a distance of 10 A using a 2 A switching function. A
dielectric constant of 1 was used.

4.2.6 Annealing Strategy

The simulated annealing refinement procedure was performed
according to the Metropolis Monte Carlo algorithm (Metropolis et al., 1953).
Acceptance of an attempted move is controlled by both the temperature and
the difference in the penalty before and after the attempted move. A move

which causes a decrease in the penalty is always accepted. A move which

66

increases the penalty, however, is only sometimes accepted. The choice to
accept an uphill move is made by first choosing a random number between
0 and 1. If this random number is less than exp(-Apenalty / T), the uphill
move is accepted. This is to say that exp(-Apenalty /T) defines the
probability of the uphill move. The higher this probability, the greater
chance of choosing a random number that is less than the calculated
probability and therefore accepting the move.

4.2.6.1 Control temperature and annealing schedule. The simulated
annealing refinement procedure is controlled by a temperature parameter
and an annealing schedule. The global minimization is controlled by an
annealing schedule, i.e., the rate at which the temperature is lowered
during the course of the refinement. The focus of this refinement strategy is
to introduce minor structural modifications to the initial structure. Large
changes would lead to conformational space that has already been shown to
be excluded through the development of the initial structure described in
Chapter 3. Therefore, the initial value of the temperature is set at 300K so
that large structural changes are not possible. The system configuration
undergoes 2000 modifications or 200 successful modifications, whichever is
first, before the temperature is lowered by 1%. At the beginning of the
refinement, however, an equilibration period of 5000 attempted steps is used
during which the temperature remains constant. This allows for many
structural modifications to occur at the relatively high starting
temperature, extending the search of conformational space. In the
beginning of the refinement, once the temperature begins being lowered,
the temperature is dropped relatively fast as a function of attempted

structural medifications since many successful moves are initially found.

67

As the refinement continues, the temperature is dropped less often since
fewer accepted moves are found. The refinement is terminated when no
successful structural modifications are found at a particular temperature.

4.2.6.2 Annealing parameters. Multiple parameters are used in the
refinement procedure, such as the starting temperature, the diffusion
parameter for the atom moves, the relative number of move types, and the A
values used to assign relative weights to the individual constituents of the
penalty function. Combinations of various values for these parameters were
used to determine the optimal conditions for refinement, taking into
consideration the final fit to the experimental data, the final energy of the
system, and the computational time required. The values for the optimized
parameters are a starting temperature of 300K, a diffusion parameter of
0.0005 A and a 0.5:0.2:0.3 ratio for compensating moves, tunneling moves
and atom moves, respectively. The energy contribution tended to overwhelm
the penalty calculated from the experimental constraints, so the A values
for all constituents of the penalty function other than the energy, for which
A was set to 1.0, were set to 3.0. Maintaining a A value of at least 1.0 for the
energy contribution is important since a A value less than one corresponds
to an effectively higher temperature and would lead to a non-realistic value
for the energy of the refined structure, thus compromising the structural
integrity.

4.2.6.3 Program considerations. The refinement procedure discussed
here has been implemented in a program called TORC (TOtal Refinement
of Constraints), which was written entirely in C. The source code for this
program, as well as a Makefile for compiling the code and a sample input

file for running the program within CHARMM, is included in Appendix

68

A.4. The general refinement procedure is shown in Figure 4.6. The code
has been incorporated into CHARMM in order to take advantage of
CHARMM’s ability to calculate the structural energy for use in the

refinement.

Main Block

Calculate Initial Penalty

—

Set number of accepted and
attempted moves to zero

'

Block A

l

Decrease T by 1%

'

Penalty > 0 and a successful
True ‘e move found at this T

l False
Finished

Figure 4.6: TORC Algorithm. This figure shows a schemecatic of the
general algorithm used to drive the refinement procedure. This figure
demonstrates the general means by which the refinement is executed.

The source code for the entire refinement program, TORC, is shown in
Appendix A 4.

Block A

-

Modify Structure

Increment number of
attempted moves

Calculate New Penalty

New penalty < old —» Block B
penalty False *

l True

Keep move

Increment number of
accepted moves

-t
Penalty > 0 —
lTrue False *
Number accepted < 200 —w»——!
False
True V

True'e- Number attempted < 2000 —»———
False

v

Figure 4.6: TORC Algorithm, continued.

70

Block B

|

Pick random number [0,1]

Random number <
exp(-Apenalty / T) F-—>alse Undo*move

True
Keep move

Increment number of
accepted moves

l-

Figure 4.6: TORC Algorithm, continued.

4.3 Refinement Results

A typical single refinement requires approximately 12 CPU hours on
a Silicon Graphics 4xR8000 Power Challenge running on a single CPU.
During the course of the refinement some 550,000 attempted moves are
made with approximately 90,000 of the moves being accepted. The number
of various move types attempted and accepted are shown in Table 4.1. The
majority of the accepted moves occur in the initial stages of the refinement
when the temperature is high and the structure is in a high penalty state.

The values of the individual contributions to the penalty function are shown

in Table 4.2.

71

Table 4.1: Attempted and Accepted Refinement Moves. The various
refinement moves are shown along with the number of each that was
attempted and accepted during the refinement. 16% of the total of
attempted moves were accepted, with a majority of these being atom
moves. For this refinement, 50% of the attempted moves were
compensating plane moves, 20% were tunneling plane moves and the
remaining 30% were atom moves.

Move Type | Accepted Attempted Accepted/ Accepted/ Attempted/
Attempted Total Total
Compensate 41789 280955 0.15 0.07 0.50
Tunnel 806 112297 0.01 0.00 0.20
Atom 47861 169336 0.28 0.09 0.30
Total 90456 562588 0.16 0.16 1.00

Table 4.2: Penalty Distribution for the Initial and Refined Structures.

The penalty values shown have been multiplied by the A values
indicated and therefore reflect the final penalty used during
refinement and not the calculated penalty of the individual
constraints. The penalties are decreased in all cases except for the
15N-13C; and 15N-1H dipolar splittings. Since the initial structure
was built using this data, it matches this data. Refinement causes
deviations from this in order to meet the other constraints, as is to be
expected.

Penalty Type A Initial ~ Refined

Penalty Penalty
15N Chemical Shift 3.0 23.1 1.2
13C Chemical Shift 3.0 04 0.1
15N Indole Chemical Shift 3.0 7.2 0.2
15N-13C; Dipolar Splitting 3.0 0.2 1.7
15N-1H Dipolar Splitting 3.0 0.4 1.7
15N-1H Indole Dipolar Splitting | 3.0 44 0.6
Distance 3.0 85.1 9.8
Cop,...-2H Quadrupolar Splitting | 3.0 4961.7 8.9
CHARMM Energy 1.0 3400.9 396.7
Total Penalty 84834 420.9

The refinement is represented structurally in Figure 4.7. The
average helical pitch changes from 4.9 A t05.2 A, and the average residues
per turn changes from 6.8 to 6.7. The characteristic most easily observed in
the structural representation of the refinement is the alleviation of

undesired VDW contacts as seen in the altered sidechain orientations.

Initial Refinement » Refined

Figure 4.7: Structural Representation of the Refinement Procedure.
The initial structure is refined by undergoing a series of structural
modifications, such as peptide plane moves and atom moves, controlled
by a penalty function that includes the SSNMR observables and the
CHARMM energy. The resulting refined structure meets the observed
data at a reasonable energy. The structures show that the hydrogen
bonding and VDW interactions have been optimized.

4.3.1 Peptide Plane Orientations
As Figure 4.7 indicates, the peptide plane moves introduce
substantial structural changes within the local conformational space

defined by the initial structures. Table 4.3 shows.the carbonyl orientations

73

with respect to the channel axis for both the initial and refined structures.
The initial structure used in this refinement example is g2328 which has
the carbonyl orientations alternating in and out. The refined structure,
however, has a changed carbonyl orientation pattern and indicates that the

conformational space defined by the initial structures has been searched.

Table 4.3: Carbonyl Orientations. The carbonyl orientations with
respect to the channel axis are changed dramatically by the
refinement procedure. The initial structure begins with an
alternating pattern of carbonyl orientations. The refined structure
displays a pattern of carbonyl orientations that are mostly pointing
into the channel. Carbonyls that are within £3° of the channel axis
are considered parallel to it. The orientations in the refined structure
that have changed from the initial structure are indicated with .

Initial Refined
Residue | Orientation | Angle | Orientation | Angle
Valy in 12.1 out T} -17.0
Glyo out 3.7 in § 71
Alag in 154 in 13.7
Leuy out -12.7 parallel 2.7
Alas in 149 parallel t -1.7
Valg out 6.5 parallel f -2.5
Valy in 15.5 out 1| -10.7
Valg out -12.8 in § 5.8
Trpog in 22,7 parallel T 04
Leujg out -13.7 in f 9.8
Trpi1 in 179 in 11.8
Leujs out -134 in | 111
Trpi3 in 23.2 in 16.8
Leuyq out -12.6 in { 104
Trpis in 22,6 in 16.6

The attempted and accepted peptide plane moves per residue are

shown in Table 4.4. Since compensating moves are small and introduce
74

minor structural deviations, many are accepted. A large number of
tunneling moves are also attempted, but most are rejected. The
conformational space is being searched, but is found by the penalty function
to be unacceptable. The number of tunneling moves that are accepted,
however, are sufficient to determine a global structural solution

independent of the initial structure, as will be shown in Chapter 5.

Table 4.4: Peptide Plane Moves Per Residue. The attempted and
accepted peptide plane moves per residue indicate that many
compensating moves are accepted, thus searching local
conformational space. Though many tunneling moves are attempted,
few are accepted. The conformational space is being searched, but is
rejected.

Compensating Tunneling
Residue | Accepted | Attempted | Accepted | Attempted
Val; 1780 9667 6 7577
Glys 3756 19293 0 7536
Alag 3391 19299 2 7314
Leuy 3486 19357 1 7370
Alas 3390 19920 0 7516
Valg 3260 19474 0 7566
Valy 3227 19532 1 7366
Valg 2567 19647 1 7377
Trpg 2715 19239 733 7411
Leujo 2587 19175 1 7623
Trp11 2254 19125 0 7569
Leujo 2373 19256 51 7410
Trpi3 2456 19233 0 7559
Leui4 2705 19275 10 7464
Trpis 1842 19463 0 7639

A plot of the carbonyl orientations with respect to the channel axis is

shown in Figure 4.8. Plot A shows the carbonyl trajectory for the entire
75

refinement. Though the carbonyl begins by pointing out of the channel,
peptide plane moves force a search of conformational space so that the
carbonyl orientation is quickly changed a large degree. It is evident that at
the start of the refinement the plane tunnels to its alternate orientation.
Compensating moves provide a large degree of plane orientation
modification, especially early in the refinement. Plot B is an expansion of

the beginning of Plot A and illustrates the early plane reorientation.

A. Leujz C-O B. Leujg C-O
,a\ 20 T T I T T T 20 i T T 1 T T
Q
2 i 4 i
B 10f 1 10}
E - - -
£ o 1o
2 L - X
£ -101 1 -10r
Q F . L
g _20 1 1 | 1 ! 1 _20 1 i L 1| |
0 2x105 4x10% 0 4000 8000
Attempted Steps Attempted Steps

Figure 4.8: Backbone Carbonyl Orientation Trajectory. The backbone
carbonyl orientation is dependent upon the peptide plane orientation.
Changes in the peptide plane orientation during refinement by
compensating and tunneling moves therefore affect the orientation of
the backbone carbonyl. A is the full refinement and B is an expansion
of the beginning of A. The carbonyl for this site is shown to begin the
refinement by pointing out of the channel axis. Tunneling moves flip
the plane orientation early, however, and compensating moves
eventually brings the carbonyl well into the channel axis.

4.3.2 Refinement Trajectories

During the refinement procedure the calculated data for an

individual amino acid and the values for the contributions to the penalty

76

function are saved as a function of attempted moves. These trajectories
serve to illustrate the refinement procedure since they show the
fluctuations in the calculated data and the behavior of the energy and the
data penalties during the course of the refinement. Trajectories for selected
data types and the penalties resulting from the data are shown in Figure

4.9.

Total Penalty for
Trpg Data Type
D _""I""I""I""I""|""|""__ (AR AL LA SLAL AL BLELELALE SLALL AL I
bD : >, f-
cvfg =) - & 82 80F 5 .
Z &] BE !
10 .;.5‘0.587- E gnq: a]
W 0.487F 3 w0 . F
2y] &g 40F 1
5.8 0387 1 28 | 0
=] 3 =1 - b
'i‘té e‘ E i E %Fa‘ ; k\vv\
OQ 2 T T O T T = n 0-....1..1”....lu.;l..nlu..n.“-
0 2x105 4x105 0 2x105 4x105
Attempted Step Attempted Step
AN REAN MARAE RS LA RARE R = & [T T T T T
s i = i 5]
l%dé 2 80 -
- R 203 E SQ o]
2% 198} i1 g9
=8] gg 40]
== 193F 3 oyaW 0
5 e i O - 3
S5 &) 1 =z
Q“. ..|....|....l....|....|14..|....—: E 0-_....l....l....I“..I....I....l....—
0 2x105 4x105 0 2x105 4x105
Attempted Step Attempted Step

Figure 4.9: Refinement Trajectories for Selected Data Types. The left
hand column illustrates the variability of the indicated SSNMR
observable for a single site over the length of the refinement. The y-
axis is labeled with the value for the experimentally observed
interaction in the center and the range of the experimental error above
and below the observed value. The right hand column is the summed
penalty associated with the individual constraints. A magnification of
the penalty trajectory tails are inset and follow the same value of the
x-axis as the full trajectory.

T

Plots of the data values as a function of attempted moves, the left
hand column in Figure 4.9, show the initial modification of the data,
illustrating the level of the search of conformational space. The plots
indicate that at the beginning of the refinement the structure can be
modified to an extent that the calculated data moves well outside of the
experimental error range for the observed data, thus allowing for
structural deviation from a local minimum. As the refinement progresses,
the structural modifications decrease in both amplitude and frequency and
the calculated data moves toward an agreement with the observed data.

The data trajectories further indicate that the individual calculated
data values are initially within or very close to the range of experimental
error. Even for those sites that remain within experimental error during
the entire refinement, structural modifications are apparent at the
beginning of the refinement trajectory. The trajectories for the sites that lie
closer to the edge of experimental error also show structural fluctuations at
the beginning of the refinement and eventually settle within the
experimental error: .

Plots of the individual experimental data éontributions to the penalty,
the right hand column in Figure 4.9, show the ability of the refinement
procedure to introduce structural modifications that significantly lower the
penalty. At the beginning of the refinement, fluctuations in the calculated
penalties illustrate the acceptance of both downhill and uphill structural
changes. These structural changes are clearly directed toward a penalty
minimum. Near the end of the refinement the stabilization of the penalty at
or near zero for the individual contributors indicates that the refinement

has succeeded in finding a structure that meets the experimental data, as

78

previously shown in Table 4.2.

The energy trajectory for the refinement indicates that the initial
structure has a relatively high energy. The major contribution to the high
energy, 3401 kcal/mol, is undesired VDW contacts. The contacts are easily
relieved early in the refinement and the energy contribution quickly
reaches a state at which the driving force to minimize the penalty is the
relaxation of the static geometry. Upon refinement, the energy moves to a
reasonable 397 kcal/mol. The final energy is not due primarily to a single
contribution, but is spread over all constraints contributing to the energy as
shown in Table 4.5. The angle energy is high, though, and a few of the
interactions have increased during refinement. This indicates that though
the overall energy decreases significantly, the refinement is moving the

structure so that the experimental observations are met.

Table 4.5: CHARMM Energy Distribution. Shown here is the
CHARMM energy distribution before and after refinement. The full
CHARMM energy is used as a constraint. The initial structure is at a
high energy due mainly to steric VDW contacts. Refinement
successfully alleviates these undesired interactions.

Energy Type Initial Refined
Bonds 45.1 18.1
VDW 23319 5.5
VDW (image) 601.8 -7.5
Electrostatics 102.9 923
Electrostatics (image) 73.1 67.9
Angles 109.8 122.1
Urey-Bradley 8.9 15.0
Dihedrals 724 78.6
Impropers 0.1 4.0
MMFP 55.0 0.9
Total 3401.0 396.9

79

Although the trajectories show that the refinement procedure is
searching conformational space, the space is limited and biased to the
regions in the vicinity of the initial structure and the experimental
ambiguities. The all atom rmsd of 1.31 A between the initial and final
structure indicates that there is a close similarity between the initial and
final structures and that only slight modifications of the initial structure
were needed to achieve compliance with all constraints. The major
conformational search occurs in the movement of the peptide plane
orientation and not in the overall structural motif. The initial structural
motif is defined analytically by the initial structure. Deviation from this

motif is therefore undesired and would be a waste of computational effort.

4.3.3 Hydrogen Bonds

Initial Structure Refined Structure
3.51} 3.51f .
g L g L - -
o i . 1 9ol e*]
= 2.91 P xd 2.91 .
231} °] 2.31+ -
| { { | 1 | i | |] | |
1.96 2.56 3.16 1.96 2.56 3.16
H-O (A) H-O (A)

Figure 4.10: Intramolecular Hydrogen Bond Distances. The initial and
refined hydrogen bond distances are shown. The box indicates the
range of allowed H-O and N-O distances and is centered on the
accepted H-O and N-O values. The initial structure identifies the
intramolecular hydrogen bonds, but refinement is necessary in order to
bring the hydrogen bond distances to within the range of accepted
values.

80

The backbone hydrogen bond distances are shown in Figure 4.10. As
the figure indicates, the hydrogen bonds in the initial structure, though
close to the accepted values, indicate that structural refinement is
necessary. Out of ten hydrogen bonds, only two are within the accepted H-O
and N-O limits. Including the hydrogen bonds in the penalty function
during refinement induces structural changes that bring the hydrogen
bonds within the accepted range except for one, which lies very close to the
edge of the range.

4.3.4 Structural Geometry

4.3.4.1 Omega _ torsion angle. The refinement procedure has a
substantial affect on the geometry of the peptide linkages by introducing
significant deviations from planarity in several of the ® torsion angles. The
refinement includes the energy and, therefore, the CHARMM force field is
imposed on the ® torsion angles along with the experimental constraints.
As a result, the average deviation from planarity for the w torsion angles is
5.6° with the largest deviation being 17.6° and three deviations over 10°.
These results show that even in the presence of the CHARMM force field
the structural constraints result in significant non-planarity for the peptide
linkages.

4.3.4.2 Influence of the CHARMM energy. The incorporation of the
CHARMM energy into the penalty function for the refinement has multiple
effects on the final structure. As well as providing a means by which
undesired VDW interactions are removed, the energy imposes subtle
changes in the covalent geometry to match the definition set by the
CHARMM force field. The initial structure maintains a static geometry
using accepted values for bond lengths and angles (Fletterick et al., 1971;

81

Momany et al., 1975; Kvick et al., 1977; LoGrasso et al., 1989; Teng et al.,
1991). Constant values are used throughout the initial structure without
consideration of the amino acid type or external interactions. The geometry
of the refined structure, however, has been relaxed and therefore contains
bond lengths and bond angles that more accurately correspond to their local
environment.

The relaxation of the covalent geometry is evident in the
consideration of the N-C bond lengths and the N-Cy-C bond angles. The N-C
bond lengths are all set to an initial value of 1.340 A. Refinement causes
lengthening and shortening of these bonds for different amino acids with
changes distributed from -0.015 A to 0.024 A, the average final N-C bond
length remained 1.34 A. The N-Cq-C bond angle is changed an average of
0.6° from 110.0° to 109.4°, and ranges from 105.5° to 113.9° for the different
amino acids. These changes in the covalent geometry indicate that the local
amino acid environments are taken into consideration during the
structural refinement.

4.4 Discussion

The refinement procedure described here has been demonstrated to
introduce minor structural modifications leading to a structure that
encompasses the experimental data and the calculated structural energy.
The simultaneous use of the experimental data and the energy as
contributors to the penalty function produces a refined structure that
satisfies well all imposed constraints without being biased toward either the
data or the energy.

The characteristics of the initial structure that prompted the

development of a computational refinement procedure have been

8

successfully addressed. The refinement provides the means to obtain a
global structural solution that meets the imposed constraints. The refined
backbone structure is defined not only by the 15N-1H and 15N-13C; dipolar
interaction vectors used to analytically calculate the initial structure, but by
all of the experimental backbone data. The refined global structure includes
both the backbone and sidechains and therefore conforms to the complete
set of experimental data used. The imposed hydrogen bond distance
constraints are also met in the refined structure and result in a well
defined helix. The inclusion of the energy in the refinement served to
remove undesired VDW contacts in the structure and to relax the covalent
geometry without adversely affecting the structural match to the
experimental data.

The use of SSNMR as the experimental method by which the
structural constraints are obtained has the advantage of defining the global
peptide structure in terms of local structural units. The orientations of
these units are individually determined and the initial structure can be
analytically determined from these quantitative constraints without the
need for a large number of qualitative constraints as is required for other
methods, such as solution-state NMR. All that is required of the
computational refinement is minor modifications within the local
conformational space in order to best fit additional constraints imposed
upon the structure.

Apparent in the refined structure is the fact that the final penalty
from the experimental data is not zero, indicating that while the refined
structure lies very close to the experimental data, the structure does not

absolutely meet the data. The structure lies within the bounds of

83

experimental error, however. Many reasons for a non-zero penalty exist, of
which some can be addressed in the future and others are inherent in the
method by which the data is obtained.

One contribution to a non-zero data penalty that can be addressed is
the parameters used in the calculation of the experimental data from the
atomic coordinates. For the calculation of the chemical shifts as a function
of the tensor orientation with respect to the external magnetic field, the
tensor elements and the tensor orientation with respect to the molecular
frame are characterized from dry powders while the observed oriented
chemical shifts are determined in fully hydrated lipid bilayers. In order to
obtain more accurate calculated chemical shifts the tensors should be
characterized in fully hydrated lipid bilayers to better represent the channel
conformation of this peptide (Lazo et al., 1993; Lazo et al., 1995).

Two other parameters are the magnitudes of the dipole interactions,
V|, used in the calculation of the 15N-1H and 15N-13C; dipolar splittings from
the atomic coordinates. These dipolar splittings, which serve to orient the
N-H and N-C bond vectors, are proportional to the values of vj. As stated
earlier, v|| is proportional to the product of the gyromagnetic ratios for the
two nuclei and is inversely proportional to the cube of the internuclear
distance. The internuclear distance is set to a static value for calculating v;.
This value for v| is then used without modification throughout the
refinement procedure, even though atom moves vary the internuclear
distance. This results in the calculated dipolar splitting being dependent
upon the orientation of the bond vector alone and not upon the internuclear
distance.

The values of QCC used to determine the C-2H bond orientations are

84

determined from model compounds. Although local dynamic averaging is
taken into consideration for individual sites, the QCC values used could be
improved. Experimental refinement of these values would lead to better
defined C-2H bond orientations.

Furthermore, molecular dynamics are present in the sample
(Nicholson et al., 1991; Lazo et al., 1993; North, 1993; North and Cross, 1993;
Lazo et al., 1995) that motionally average the observed experimental data.
The amplitude and axis of the local backbone motions have been determined
for many sites and these motions will affect the experimental constraints.
Incorporating motional averaging will lead to more realistic bond
orientations.

Molecular fluctuations occurring in the sample may be such that it is
not possible to accurately represent all of the structural data in a single,
static structure. In fact, what is refined is a motionally averaged structure,
representing motional averaging that occurs on a time scale of msec or
less. An accurate simulation of the molecular dynamics based on the
experimentally observed backbone and sidechain dynamics would allow for
the calculation of the time averaged observables and could be used to
determine a structure that meets the motionally averaged experimental
structural constraints.

The inclusion of the structural energy, while maintaining the
covalent geometry and removing undesired VDW contacts, influences the
structure in a way that may not correspond to the influence due to the
experimental data. The energy is calculated for the structure in a vacuum
and will therefore bias the structure. As a result, the penalty due to the

experimental data is reduced to a point that is very close to zero but cannot

8

be further reduced. At the same time, the calculated energy is significantly
reduced during refinement but not to the extent possible in the absence of
experimental constraints. This indicates that although the penalties from
the two different types of structural constraints are both necessary and are
reduced during refinement, they compete for control of the structural
modifications.

The final structure obtained through this refinement procedure
satisfies well the constraints imposed on the structure. The final penalty is
very low and reflects the ability of the refinement to introduce structural
modifications in such a way as to satisfy imposed constraints such as
energy and hydrogen bonds while simultaneously satisfying the
experimentally derived constraints.

This chapter has described the refinement procedure of a single
initial structure. In order to obtain a final, refined structure, all four of the
base initial structures must be used as starting structures and a
refinement ensemble generated consisting of multiple refinements for each
initial structure. The results of the individual refinements must then be
averaged, and the average structure refined. The implementation of this

strategy and its result is the topic of discussion in Chapter 5.

CHAPTER 5
DETERMINATION AND ANALYSIS OF THE FINAL STRUCTURE

5.1 Introduction

The structure of gA in hydrated DMPC bilayers has been successfully
solved as an initial structure and a computational refinement method
developed that takes advantage of both the large number of SSNMR
constraints available for this peptide and the full energy described by the
CHARMM force field. Refinement of a single structure has shown that the
SSNMR observables are met to within the limits of experimental error, the
intramolecular hydrogen bonds and the VDW interactions optimized, and
the static geometry of the initial structure relaxed. During the refinement
of a single initial structure, the alternating pattern of the carbonyl
orientations with respect to the channel axis was disrupted, bringing many
of the carbonyl oxygens into the channel. This is reasonable considering
that the function of gA in membranes is the transportation of monovalent
cations that could be solvated by the carbonyl oxygens (Hotchkiss, 1944;
Harold and Baarada, 1967; Jordan, 1987; Roux and Karplus, 1991b; Roux
and Karplus, 1991a).

This chapter will discuss the complete refinement of gA by applying
the refinement method discussed in Chapter 4 to the four base initial
structures described in Chapter 3. These initial structures are

representative of the entire conformational space analytically determined

87

for this peptide. The structures were not formed by model fitting the data,
nor were any subjective judgments made while determining the structures.
The assumptions that were used to aid in the determination of the initial
structures, such as a static covalent geometry and a planar peptide linkage,
are relaxed during the refinement procedure. A set of ten refinements for
each initial structure will be generated and the results of each group
discussed, such as carbonyl orientations and atomic root mean square
deviations (rmsd), to gain insight into the structural variability sampled by
the refinement. The refined structures from the different initial structures
will be compared, showing that the refinement procedure consistently finds
a structural solution that is nearly identical and hence nearly independent
of the starting structure. The resulting forty refined structures will then be
atomically averaged and the resulting structure refined with atom moves
only in order to remain within the local conformational space defined by the
all move refinement of the different initial structures. Detailed structural
characteristics of the final refined structure will then be presented.
5.2 Refinement of the Individual Initial Structures

5.2.1 Structural Ensembles

The four base initial structures are each refined ten times with a
different starting random number seed so that ten different structural
refinements are performed. The same structural constraints are used in
each refinement for each initial structure as described in Chapter 4. The
different refinement ensembles for the initial structures are shown in
Figure 5.1. The structures within the ensembles were first superimposed
onto the first structure for each group so that translations and rotations

about the channel axis during refinement would not lead to erroneous

88

results in the analysis. The superposition is done by limiting the degrees of
freedom so that rotations about X and Y, the axes perpendicular to the
channel axis, are not allowed. Rotations about Z reflect rotations about the

channel axis and are therefore allowed. Translations along all axes are

Figure 5.1: Initial Structure Refinements. The four initial structures
were each refined ten times to produce forty refined structures. The
structures within each group show little variability in the atomic
positions.

also allowed. Moving the structures in these ways has no affect on the
imposed constraints since the constraints are either relative to the Z axis,
as in the SSNMR data, or are only internally relative, such as the
intramolecular hydrogen bond distances and the energy. This method of
atomic superposition will be followed throughout this chapter.

Each ensemble is in itself consistent with regard to the atomic
positions. A few minor deviations are seen, such as the end region of the
peptide in the g2424 ensemble that has undergone a plane flip after the
Trpis residue. While this has caused the chain to deviate from the rest of
the ensemble, the final penalty for this structure is 413, which is
comparable to the average penalty for this ensemble of 415. Other plane flips
are seen in other structures, but do not affect the structure as the one just
described.

Although the conformational space defined by the peptide plane
orientations with respect to the channel axis are searched, only small
changes in the atom positions are made. The peptide plane orientations
refine to a single structure in most cases, but do so with peptide plane
moves which have little affect on the global structure. As a result, the
deviations within an ensemble are minimal, and the atomic rmsd’s are
very small: 0.15 A, 0.15 A, 0.11 A and 0.17 A for the g2328, g2424, g2727 and
22823 ensembles, respectively. The structures in the refinement ensembles
all meet the imposed constraints, indicating that this stage of the

refinement procedure is successful.

5.2.2 Backbone Carbonyl Orientations

g2328 g2424
30 L) L) 1 3 T L 1) L] T L] L] L] T L] L) 30 :l T ¥ L) L) L] L) L L) T L T T L)
5 20} iy _'ii' § 20Fi § ogl' i
+3 - - e 4 3
gk Sop gt
g 0: - : [3 g 0 = $ i ! ;
8 -10F - §isi ili ili id 8 -10E_ - 0 _iili i
['s F = - - -]
O 20 1 o 20p - .
_30 e i it it it it tilikilil _30 CLil (RSN NEINER AR EEEN A Y &
1 3 5 7 9 11 138 1 3 5 7 9 11 13
Residue Residue
g2727 £2823
30 :I T 1 L] ¥ L) T L] L] T L] L] 1] l: 30 :l L L L L] L) L) L 1 L] L] L] L) I:
s 20| |11 L g i
5 w0l T e S o e g e S
=1 e = E =1 E i~ -
£ O IREL 1 & g
S -10¢ b] SR _ 3
g 208 IR i
_30 CLil Litit it thitili letlibitb il _30 Pl i liliblilititsl Litilil il
1 3 5 7 9111 1 3 5 7 9 11 13
Residue Residue

Figure 5.2: Carbonyl Orientations for Initial Structure Refinements.
The carbonyl orientations with respect to the channel axis were
monitored for each refinement group to determine the ability of the
refinement procedure to reach a global refined structure. A positive
orientation points into the channel. The flat line depicts the carbonyl
orientations in the initial structure.

The backbone carbonyl orientations with respect to the channel axis
are calculated for each refined structure. Since the conformational space
defined by the initial structures is based on the peptide plane orientations,

this information is used as one of the means to determine the success of the
91

refinement. The refined structures from each starting configuration
should have nearly the same peptide plane orientations if the refinement
procedure is adequately searching conformational space and if the
constraints are adequate for defining a unique structure. The carbonyl
orientations for the individual initial structure refinement ensembles are
shown in Figure 5.2. The flat lines in the plots represent the carbonyl
orientations for each initial structure before refinement, and the other
symbols represent the ten different refinements for each initial structure.

The carbonyl orientations are different for the four initial structures.
Refinement, however, produces a set of ensembles that are nearly identical.
The terminating residue, Trpi1s, will not be considered in this analysis
since it is affected by the attached ethanolamine, for which no experimental
constraints were used. Minor discrepancies exist for a few of the residues
where a small number of refined structures within an ensemble differ from
the rest, as in the Valj site of the g2328 refinement and the Trpji site in the
g2727 refinement. The only major difference between the ensembles is the
Trp1s residue in the g2823 refinement. This carbonyl orientation remains at
or near its starting position in all ten of the refined structures. Tunneling of
this peptide plane orientation is inhibited for reasons that are not clear.
5.2.3 Merging the Initial Structure Refinement Ensembles

The initial structure refinement ensembles must be joined in order to
determine an average atomic structure that represents all of the
refinement ensembles. It was shown in Figure 5.1 that the structures
within the ensembles are nearly identical and in Figure 5.2 that the
carbonyl orientations are very similar across the different ensembles. In

order to join the different ensembles into a single refinement ensemble, the

2

individual refined structures must first be vsuperimposed. Since the
refinement procedure includes constraints on the dimerization of the
monomer (Chapter 4), all of the refined structures are superimposed onto a
reference structure that is in a good starting position for dimerization.
CHARMM rotates the monomer 180° about the X axis to form the dimer and
the IMAGE facility is used to take the dimer into consideration during the
calculation of the energy. The starting structure must therefore be
translated to a suitable position so that this rotation produces a dimer with

the proper intermolecular hydrogen bonds.

e

C-0 Orientation
o

-10F
-20 . 3
_30‘! Lil Lidids bibalatlilil ! l:
1 3 5 7 9111
Residue

Figure 5.3: All Forty Refinements. The forty refined structures, ten
from each of the four base initial structures, are shown superimposed
in A). All forty of these refined structures meet the imposed constraints
and, therefore, all are used to produce an atomic average that is later
refined as the final structure. Although Leu;o appears to be

disordered, it is well defined within the initial structure refinement
ensembles as shown in Figure 5.1. The carbonyl orientations, shown in
B), in the structures are generally consistent for individual amino
acids.

The superposition produces a single ensemble, shown in Figure 5.3,
representing all of the refined initial structures. The carbonyl orientations
shown in Figure 5.2 are also shown in Figure 5.3 as a single plot
representing the total ensemble. Except for deviations in residues Valj,
Trp13 and Trpis, and minor deviations in residues Alas and Trpii, the
general pattern of carbonyl orientations is the same across all forty refined
structures.

The forty refined structures superimpose well to the reference
structure, as shown by the low atomic rmsd of 1.20 A. This rmsd is
determined by first calculating the rmsd for each structure to the reference
structure, resulting in forty rmsd values. The individual rmsd values are
then averaged. Superimposing the structures onto the first refined
structure produces an even lower atomic rmsd of 0.48 A. This low rmsd
value reflects the ability of the refinement procedure to determine a global
refined structure, even when starting from different initial structures.

A single sidechain, Leuig, shows variability in the global ensemble.
Although it appears in Figure 5.3 as if this sidechain is disordered, it is
well ordered within the individual ensembles shown in Figure 5.1. The
atomic rmsd within each ensemble of this sidechain alone without further
superposition, including backbone atoms, is 0.10 A for g2328, 0.16 A for
g2424, 0.10 A for g2727 and 0.22 A for g2823. The (%1, %2) torsion angles for a
single structure from each of the four initial structure refinements are
(-78°, -64°) for g2328, (-69°, -79°) for g2424, (-55°, -56°) for g2727, and (-40°,
+98°) for g2823. Taking the atomic average of the forty structures results in
(%1, %2) torsion angles of (-59°, -71°).

The average structure is shown superimposed onto representative

A

structures from each of the individual refinement ensembles in Figure 5.4.
The initial refinements have an average penalty of 450. The final penalties
were in the range of 411 to 513. Since no single structure has an abnormally
high penalty with respect to the other structures, all initial refined
structures are used to produce the average structure. Taking an atomic
average distorts the bond lengths and bond angles as well as the structural
orientations used in calculating the SSNMR values, so refinement of the

average structure is required.

,/‘:.‘5 et
N2 LN

—Eon

Figure 5.4: Average Structure with Four Initial Refined Structures.
The average structure, shown as a solid line, is taken from all forty of
the initial refinements. Shown here is a single representative refined
structure from each of the four base initial structures along with the
atomic average structure to be used for the final refinement.

9

5.3 Refinement of the Average Structure

The average structure is refined in much the same way as the initial
structures. Since taking an average of the initial refinements has produced
an average structure that contains only minor distortions in the covalent
geometry and the orientations defined by the experimental constraints, only
minor refinement is required to produce a final structure. Conformational
space defined by the peptide planes has already been searched in the
development of the average structure. Therefore, large structural
deviations are not required in the final refinement phase. To remain within
the local conformational space defined by the average structure, atom
moves alone are used for introducing structural modifications. The same
refinement parameters will be used in this procedure as those used in the
refinement of the initial structures: a starting temperature of 300K and a
diffusion parameter of 0.0005 A. The same structural constraints are
applied during this refinement.

The refinement penalties for the average and final structures are
shown in Table 5.1. Refinement produces a final structure whose total
penalty reflects the structural agreement to the imposed constraints with
no single penalty making an unreasonable contribution. The penalty from
the SSNMR interactions as a function of residue number is shown in
Figure 5.5. The initial structure used for this plot is g2328. The penalty for
several of the residues in the initial structure are severe. The final
structure, however, has a per residue penalty that is nearly zero for each
residue. Reducing the penalty scale to a maximum of 0.5, the value at
which the difference between the calculated value and the observed value is

equal to the experimental error, shows a variable per residue penalty, but

9

all are within experimental error.

Table 5.1: Refinement Penalties for the Average and Final
Structures. The average structure from the refinement ensemble
displays high penalties for multiple constraints. The final
refinement produces a structure that meets the imposed constraints.

Penalty Type A Average Final
Structure Structure
Penalty Penalty

15N Chemical Shift 3.0 16.9 0.9
13C Chemical Shift 3.0 0.1 0.0
15N Indole Chemical Shift 3.0 0.1 0.1
15N-13C; Dipolar Splitting 3.0 10.3 14
15N-1H Dipolar Splitting 3.0 5.7 2.2
15N-1H Indole Dipolar Splitting | 3.0 0.4 0.5
Distance 3.0 13.0 7.7
Co.B,...-2H Quadrupolar Splitting{ 3.0 313.6 6.0
CHARMM Energy 1.0 5623.2 370.2
Total Penalty 5983.3 389.0

In order to determine that the refinement of the average structure
produces a reproducible structure, the refinement of the average structure
was repeated. A comparison of the two structures showed an all atom
atomic rmsd of only 0.06A, demonstrating reproducibility of this final
refinement procedure.

The superposition of the average and final structures is shown in
Figure 5.6. It is evident that only minor structural deviations have
occurred. The atomic rmsd between the two structures is only 0.32 A. The
covalent geometry throughout the average structure is distorted from the
initial refinements as a result of taking the atomic average. The final
structure has been refined into an acceptable covalent geometry defined by

the CHARMM force field. Furthermore, the pattern of the carbonyl

a7

orientations have not been modified.

—e— Initial
<
500 I L) 1)] i 0,5] ¥] | | i
400 . 0.4 § F 2 l\ .
£ 300p 1 Zogin #) /\’\-
® @ /| | o
g 200 1 & g0k 11} d]
n«: & 0.2 / \,
100}] I LR 5
0.1f f -
0- B2 680804 u
[1 (] 1 1 [1 0.0 ! . | [] | L] 1
2 4 6 8 1012 14 2 4 6 8101214
Residue Residue

Figure 5.5: Penalty Per Residue. The penalty for all SSNMR
interactions is calculated on a per residue basis and plotted for both
the initial and final structures. The initial structure is g2328 and the
final structure is the final refined structure. The left hand plot shows
the penalties for both structures using the same penalty scale. The
initial structure has a much higher penalty for many residues. The
right hand plot is the final penalty alone plotted on a much smaller
penalty scale. The final structure falls within experimental error and
has a significantly reduced per residue penalty.

5.4 Characteristics of the Final Structure

The final structure is shown alone in Figure 5.7. This structure
represents all of the experimentally derived conformational constraints
used in the refinement procedure, the intramolecular hydrogen bonds and
the CHARMM energy. The atomic coordinates in CHARMM PDB format
for this structure as a dimer are listed in Appendix A.2. The calculated and
observed values of the constraints used during the refinement procedure
are listed in Appendix A.3.1. The final structure was analyzed using

Procheck (Laskowski et al., 1993), the output of which is listed in Appendix
98

A.3.2. The refinement procedure includes not only the constraints within
the monomer, but also the intermolecular hydrogen bonds necessary to
form a head to head dimer, thus forming the proper cation channel

structure. These constraints are included as part of the CHARMM energy.
The dimer is shown in Figure 5.8.

Figure 5.6: Average and Final Refined Structures. Atom moves alone
were used during the refinement procedure to produce the final
structure from the average of the initial refinements. Minor
modifications in the structure were all that were required to relieve
undesired penalties caused by taking an average of the forty refined
structures. The average structure is shown in dark gray and the final
structure in black.

Figure 5.7: Final Structure. The final structure is determined by
refining the atomic average from the forty initial refined structures. As
a result, it represents the final solution comprising all of the
conformational space defined by the four base initial structures. This
final structure meets the imposed experimental constraints to within
the limits of experimental error, the imposed intramolecular hydrogen
bond distances and has a reasonable all atom CHARMM energy.

Table 5.2 shows the g2328 initial structure and global final structure
torsion angles. The torsion angles are calculated for the g2328 structure
prior to minimization as described in Chapter 4 so as to show the

experimentally determined torsion angles. Even though large changes in

100

the final structure (¢, y) torsion angles have occurred, the two structures
show the same pattern of sign alternation, designating the conserved
B-helix motif. As mentioned in Chapter 4, refinement relaxes the planarity
of the peptide linkage. The final structure shows three deviations larger

than 10° and an average deviation of 6°.

Figure 5.8: Final Structure as a Head to Head Dimer. gA in hydrated
lipid bilayers forms a monovalent cation channel composed of two head
to head monomers. The backbone is shown in black and the sidechains
in dark gray. The refinement procedure refines the intermolecular
hydrogen bonds and the position of the dimerization by using an image
of the upper monomer rotated 180° about X, an axis perpendicular to
the channel axis. The dimer shown here is positioned so that the N-
terminus formyl groups are in front. This structure has an average
residues per turn of 6.5 and an average pitch of 4.3 A. The channel
length, measured along Z from the Trp15-C1 in the XY plane from the

upper monomer to the Trpi5-C; in the XY plane from the lower
monomer, is 22.8 A

101

Table 5.2: Initial and Final Structure Torsion Angles. The torsion
angles for the initial g2328 structure are before minimization to
represent the initial structure as determined from experimental
constraints. The final structure torsion angles indicate that the
structural motif is conserved.

Initial g2328 Structure
Residue| ¢ v ® 1 %2 13
Valy -138.59 14138 -179.85 -178.02 — —_
Glyz2 126.62 -11665 179.63 — — —

Alag -129.71 152.79 -179.98 — —
Leuy 120.10 -102.84 -179.94 -153.97 160.15 —

Alas -141.98 15095 179.57 — — —_
Valg 122.76 -116.39 -179.98 55.00 — —
Valy -132.50 15021 179.89 -145.03 — —
Valg 119.07 -103.65 -179.66 55.06 — —
Trpg -134.54 15243 17982 -72.00 -96.89 -179.98

Leujg 10754 9828 17990 -58.04 -11.97 —
Trp11 -133.53 14619 17989 -69.97 -80.90 -179.89
Leuie 11409 -100.72 -179.76 -173.04 -61.01 —
Trpis -133.60 153.00 179.88 -62.98 -89.93 -179.88
Leuis 109.93 -10095 -179.97 -17296 -62.97 —
Trpis -136.10 15460 17980 -58.01 -96.00 179.51

Final Structure

Residue o v ® Y1 x2 X3
Valy -107.66 12058 17128 17744 —_ —_
Glyz2 151.13 -129.35 176.09 —_ — —
Alag -114.83 14393 -174.09 — — —_
Leuy 12158 -13593 -17331 -157.28 15192 —
Alas -116.08 124.83 -178.79 — — —
Valg 146.70 -118.17 176.16 58.90 — —
Valg -120.19 125.72 164.60 -151.41 —_ —_
Valg 151.68 -120.34 177.77 60.42 — —
Trpg -110.55 12831 -173.03 -74.17 -81.81 171.03

Leujo 129.24 -128.14 17629 -7261 -70.72 —
Trpn -108.76 151.52 16820 -70.63 -90.81 -173.86
Leuie 11443 -119.08 17460 -176.82 -5947 —
Trpis -99.98 15338 167.11 -63.75 -85.09 = 175.97
Leuiq 111.18 -11544 17848 -176.07 -TL.77 —
Trpis -10846 12738 -177.86 -60.64 -90.06 175.96

102

The sidechain torsion angles are worth noting. The Leu;q, Leu;2 and
Leui4 sidechains in the initial structures are minimized before refinement
as mentioned in Chapter 4. The final structure therefore reflects the
refinement of these minimized sidechain orientations. The refinement has
little effect on any of the sidechain orientations except for Leujg, and this is
primarily exhibited in ¥2. The change in Leujq is therefore due to the
minimization. The Leujg (X1, x2) torsion angles in the minimized initial
structures are (-79.35, -51.79) for g2328, (-71.47, -74.66) for g2424, (-66.40,
-48.20) for g2727, and (-57.08, 86.25) for g2823, and are (-73°, -71°) in the final

structure.

5.4.1 Peptide Plane Orientations

Bond Orientation
(degrees)

5 7 9 11 13 15
Residue

1 3

Figure 5.9: Final Structure Bond Orientations. The N-H and C-O bond
orientations for the final structure show that the carbonyl orientations
are nearly the same as those found during the initial refinements.
Positive orientations designate carbonyls pointing into the channel.
The latter section of the helix has the carbonyls pointing into the
channel axis, thus in a good position for cation solvation. For many
sites, the C-O orientation for residue i is not opposite the N-H
orientation of residue i+1, designating a non-planar peptide linkage.

103

The peptide plane orientations in the final structure are important
for the understanding of the function of this peptide as a cation channel. As
previously discussed, the backbone carbonyl oxygens are thought to be
involved in solvation of the cation, thus facilitating its passage through the
channel. It is interesting to note that the carbonyl oxygens in the final
structure are directed primarily into the channel, as shown in Figure 5.9.
Of the four that point away from the channel, the Valj, Alas, Valg and Valy
carbonyls (the terminating Trpis is not considered, as previously
discussed), the largest is Valj at 11.5°. Of the residues that point into the
channel, Trp;3 is the largest at 20.6°.

Both the N-H and the C-O orientations are worth consideration.
While the C-O groups are involved in solvating the cation, the N-H groups
are directly controlled by an experimental constraint. The force of the
constraint for the N-H group on residue i is transferred through the peptide
linkage to the C-O group on residue i-1. There are no direct experimental
observations controlling the orientation of the carbonyls, except for the 13Cy
chemical shifts for Glys and Leujg. The N-Ci bond has an imposed
experimental constraint, however, and is linked through a single bond
angle to the C-O bond, thus affecting its orientation. The existing
experimental constraints are sufficient to control the orientation of the
carbonyl groups, even to the degree of introducing significant non-planarity
to the peptide linkages.

5.4.2 Helical Parameters

Helical parameters are readily determined by observing the

placement of the Cy atoms within the coordinate system. Plots of the Cg

atoms as a function of X, Y and Z are shown in Figure 5.10.

104

VAV /V \

1 3 5 7 9 1113 15 1 3 5 7 9 11 13 15

X (A)

Residue Residue

12
10

- 8

< 6

N 4
2
O 1 1 L L 5

1 3 5 7 9 11 13 15
Residue

Figure 5.10: Helical Parameters as a Function of Cy, Location. The Cy
coordinates in X, Y and Z plotted against the Cy residue numbers

yields information concerning the helical parameters, such as residues
per turn and helical pitch. Plots in X and Y both give 6.5 as the
residues per turn when fit to a sine wave. Using 6.5 as the residues per
turn, the plot in Z gives the helical pitch as 4.9 A.

5.4.2.1 Residues per turn. The helix axis is parallel to Z. Since gA
forms a regular beta helix, the Cg, locations as a function of both X and Y
have a regular oscillating pattern. These plots can be fit to a sine wave and
used to determine the residues per turn (rpt) of the helix. The form of the

equation used to fit the plots in X and Y is
y = my +mysin(m,x +m,), (5-1)

where my are the variable parameters used to fit the plotted curve. For the

105

plot of Cy vs. X, these parameters are mj=-0.16, mg=4.00, m3=-55.52 and
m4=313.01. For the plot of Cy vs. Y, these parameters are m;=0.286,
mg=-4.03, m3=-55.29 and m4=221.39. m; is used to shift the line along the
vertical axis. Since the helix is centered on the Z axis, small m; values are
all that are required. mg scales the amplitude of the lines. m3 serves to
define the number of degrees per residue. m4 controls the phase shift
between the two lines. Since X and Y are 90° phase shifted, this is reflected
in m4 for the X and Y plots (Am4 = 91.62). The fits to the plotted curves are
shown in Figure 5.10. The equations can be used directly to solve the rpt by
using the absolute value of mg. A full turn of the helix is 360°. Dividing this
number by mg3 from either the X or Y plot gives 6.5 rpt. It was mentioned in
Chapter 1 that the rpt for this sfructure was thought to be 6.3 based on early
models of the channel structure. For 15 residues, 6.3 rpt gives 2.38 turns of
the helix, while 6.5 rpt gives 2.31. A difference of 0.07 turns (0.5 residues) is
minor but significant.

5.4.2.2 Helical pitch. The helical pitch, the distance between the turns
of the helix, can also be calculated from the Cy locations by plotting Cq, as a
function of Z. Fitting a straight line to this plot produces the equation

y=-0.64+0.76x. (5-3)
The slope of the line indicates the change in distance in A as a function of
residue number. Taking 6.5 as the number of residues in a single turn of
the helix and multiplying by the slope of the line, 0.76, gives 4.9 A as the
helical pitch.
5.5 Discussion

5.5.1 Structural Comparison
The structure of gA has been determined by solution NMR studies in

106

SDS micelles (Bystrov et al., 1987; Lomize et al., 1992). Given here is a
structural comparison of this structure (Arseniev) with the one presented
in this dissertation (Ketchem). The two structures are shown superimposed
in Figure 5.11. The torsion angles for the Ketchem structure are given
previously in Table 5.2 and the torsion angles for the Arseniev structure are

given in Table 5.3.

Top View Side View

Figure 5.11: Ketchem and Arseniev Structures. The structures were
superimposed as previously described. The Ketchem structure is black
and the Arseniev structure is dark gray. Both the top and side views
show that the backbone structures have similar structural folds. Many
of the sidechain orientations differ, though, especially Trpg. In the
Ketchem structure the Trpg and Trpis planes stack, while Trpg and

Trpis in the Arseniev structure point in opposite directions.

107

Table 5.3: Arseniev Structure Torsion Angles. The (¢, y) torsion
angles alternate in sign, as do those in the Ketchem structure,
indicating a similar structural motif. The peptide linkages are
constrained to be planar. The sidechain orientations between the two
structures are similar except for primarily Trpg, Leuig, Leuj2 and
Leuyq.

Residue | ¢ ¥) %1 x2 X3
Val; |-12692 10698 -179.85 17548 — —
Glys 15829 9892 17969 — — —
Alas |-140.35 13053 -179.97 — — —
Leuy 13948 -134.05 -17993 17216 10068 —
Alas |-10781 12286 17958 — — —
Valg 137.86 -115.73 -179.96 5867 — —
Val; |-11082 12781 17984 -16739 — —
Valg 13751 -13884 -179.67 6942 — _
Trps |-110.3¢ 13892 17977 16726 8879 -179.95
Leujp | 13576 -97.39 17992 -17558 167.38 —
Trpp1 |-14144 15785 17982 -64.69 -5321 -179.95
Leujs | 11032 -10564 -179.71 4877 17351 —
Trpis |-13224 15635 17983 -67.50 -90.28 -179.88
Leu;s | 107.30 -93.89 -17996 6308 8908 —
Trpis |-13297 13604 17970 -68.77 9242 17956

.« -.. Immediately evident in the Arseniev structure is that the (¢, y)
torsion angles exhibit a B-helix pattern shown in the sign alternation. Also
noted is that the peptide plane linkages are fixed near 180°. Plots of the
backbone torsion angles in Figure 5.12 show that the backbones of these two
experimental structures are qualitatively similar. The all atom atomic
rmsd is 2.3 A. The average deviation in ¢ between the two structures is only
14°, but at the C-terminus of the peptide the deviation in the odd site
residues is much larger: 30° for the last three odd residues. The odd site

residues show large deviations in ¢ but not v, indicating that the difference

108

between the backbone structures occurs in alternating peptide planes. This
is verified by the deviations in y. The average deviation for the entire
structure is only 12°, but the last three even residues have an average vy

deviation of 22°,

O Ketchem
Arseni
o [J Arseniev v
1805]]||IIIIII[II|IE 180_lllllllllllllll_
E © : g n
2120 88 8, 2 120fs 8 o ¢ 8 B
é 60; 3 é 60 F 3
g OF i g Of 1
;'rg‘ -60 F 3 w -60F 3
o E o o o 9 of S o B g 9
S-120f8 g 8 8 ° 2 3 89 S.120f o o ° g o 8
-1805-IIIIIIIIIIIIIII€ -180-Illllllllllllll-
1 35 7 9111315 1 35 7 9111315
Residue ® Residue
160 lllllllllllllllE
- [] o —;
2 170k, ° 3
1] 1 ° E
2 o o , © 8
o 180fm0opBoopOoonnm g-
.9 3 %o [r
2-170F E
o
B] F
_160 Lo 111119111114

135 7 9111315
Residue

Figure 5.12: Ketchem and Arseniev Backbone Torsion Angles. The
backbone torsion angles are qualitatively similar for the two
structures, indicating that at this level they represent the same
structural motif. A more detailed inspection shows that they differ
substantially.

Deviations occurring in (yj, ¢i+1) pairs indicates changes in peptide

109

plane normal orientations with respect to the channel axis. The deviations
in yj are similar to those in ¢j+1 resulting in minimal distortion to the
helical parameters. This results in quite different orientations for the
carbonyl orientations near the C-terminus. The structure determined in
bilayers using SSNMR constraints showed most carbonyl orientations
pointing into the channel, as previously shown in Figure 5.9. The Arseniev
structure has a pattern of carbonyl orientations that alternates somewhat
like g2823. This may be due to the planar peptide linkages used in the
Arseniev structure since relaxing the linkage will allow for changes in the
carbonyl orientations without severely affecting the rest of the structure.
The difference between the alternating carbonyl orientation pattern in the
Arseniev structure and the all in carbonyl orientation pattern in the
Ketchem structure for the end of the helix accounts for the large differences
in the backbone (¢, y) torsion angles.

The sidechain orientations between the two structures are also
similar, as seen in Figure 5.11. The %1 values for both Val; and Val7 are
comparable, even though these sidechains show large amplitude local
motions and only the dominant rotameric state is considered. The major
differences are in Trpg, Leujg, Leuj2 and Leuj4. In the Ketchem structure
the Trpg and Trpjs residues stack. The Arseniev structure changes the
Trpg orientation by approximately 120° for x1 and approximately 180° for ys.
Although the Trpg indole is still available for interacting with the lipid head
groups, the energetically favored stacking is lost. The difference in leucine
sidechain conformations is probably due to the difference in the bilayer
versus micellar surface.

The calculated penalty from the SSNMR observables for the Arseniev

110

structure represent another way to compare these structures. The penalty
values are shown in Table 5.4. The majority of the high penalty is from the
C-2H sidechain data, while the backbone data shows only modest

differences.

Table 5.4: Ketchem and Arseniev SSNMR Penalties. The calculated
SSNMR penalties are used to compare these two structures. The
Arseniev structure was determined in SDS, which has the effect of

distorting the structure in comparison to bilayers. It therefore does
not fit well the observed SSNMR data.

Penalty Type Ketchem Arseniev

15N Chemical Shift 1.2 419

13C Chemical Shift 0.1 1.8

15N Indole Chemical Shift 0.2 17.0

15N-13C; Dipolar Splitting 1.7 168.4

15N-1H Dipolar Splitting 1.7 24.6

15N-1H Indole Dipolar Splitting 0.6 3.3

CqB,...-2H Quadrupolar Splitting 8.9 10155.4

[Total Penalty 144 104124

These observations indicate that the protein fold has been adequately
assessed by observations in SDS micelles but details of the sidechains and
backbone structures are different in a bilayer environment.

5.5.2 Functional Aspects

The final structure represents a time averaged structure due to the
fact that the experimental observations are time averaged. Molecular
dynamics occur in natural environments and the structure should be
viewed in this light. An understanding of both the structure and dynamics

of the system under study is essential to a full understanding of its
111

function. The structure has many important features for function, such as
the Tryptophan and backbone carbonyl orientations. It has been shown (Hu
et al., 1993) that the tryptophan residues play an important role in both
stabilizing the channel through electrostatic interactions at the bilayer
surface and providing a net dipole moment for the channel that affects the
cation conductance. The backbone carbonyl groups serve to solvate the
cation during transport. The final structure supports this in that the
carbonyl orientations point predominantly into the channel. Peptide plane
librational motions occur on the time scale of cation transport (North and
Cross, 1993; North and Cross, 1995), suggesting that the motions of the
peptide plénes are correlated with cation transport. These results suggest
that the backbone carbonyl groups are essential for cation transport.
5.5.3 Final Remarks

A novel method for structure determination in the solid state has
been presented. SSNMR has been demonstrated by this work to be a useful
method by which protein structures in membrane systems can be solved.
The final gA structure has been determined and found to be well within the
limits of the imposed SSNMR constraints. The techniques described here
are readily applicable to other membrane systems, the primary challenge
being the sample preparation for the necessary experimental observations.
Once the observations are made, however, the structure can be determined

using the method outlined in this dissertation.

112

APPENDICES

A.1 Experimental SSNMR Data
A.1.1 Sample Data Plots

The structural constraints used in the determination and refinement
of the final structure were obtained from experimental SSNMR spectra
such as those shown here. The 15N-13C; dipolar splittings were obtained
using a one dimensional CPECHO experiment as described in Chapter
2.3.2. The residue designation in the spectra title denotes the residue
containing the 15N label. The 15N-1H dipolar splittings were obtained using
a two dimensional SLOCF experiment as described in Chapter 2.3.3. All
spectra were chemical shift referenced using a saturated 1SNH4NOg3
solution. The observed dipolar splittings are listed, as well as the observed

value of the 15N chemical shift.

113

Val; 15N-13C

0.463 kHz
198 ppm
320 280 240 200 160 120 80 40
ppm
Valy 15N-1H
AN
19.7 kHz |
S 198 ppm
S~ L
® Ty
)
a % N »
Q - < %
> Sz B
960 240 220 200 180 160 140 120

ppm

114

0 -10 -20
kHz

10

20

Glyg 15N-1H

17.6 kHz
113 ppm
9,
S

T T T

180 160 140 120 100 80 60 40

ppm
Valg 15N-1H
18.2 kHz
145 ppm

200 180 160 140 120 100 80
ppm

115

10 0 -10 -20
kHz

20

0 -10 -20
kHz

10

20

Valy 16N-13C

0.519 kHz
196 ppm

320 280 240 200 160 120 80 40

ppm

Trpg 15N-13C;

0.487 kHz
198 ppm

320 280 240 200 160 120 80 40

ppm

116

Leujo 15N-1H

14.6 kHz | ©

144 ppm | &V

=

<« i

- Lo
>

=

=

R=)

N

200 180 160 140 120 100 80
ppm

Trp11 15N_13Cl

0.365 kHz
185 ppm

320 280 240 200 160 120 80 40
ppm

117

kHz

Leujg 15N-13Cy

0.779 kHz
132 ppm

320 280 240 200 160 120 80 40

ppm

Trp13 15N-13Cy

0.454 kHz
182 ppm

320 280 240 200 160 120 80 40

ppm

118

Leujq 16N-13C;

0.657 kHz
131 ppm

320 280 240 200 160 120 80 40
ppm

Trpy5 15N-13C4

0.507 kHz
181 ppm

320 280 240 200 160 120 80 40
ppm

119

A.1.2 Data Tables
All of the data used in the refinement procedure is listed here, along

with the experimental errors used to define the penalty function.

15N Chemical Shift

Residue| ¢, Oyy Gyz o B Observed Error

(ppm) (ppm) (ppm) () (¢ (ppm) (ppm)
Val; 39.0 63.0 213.0 270 106.0 198.0 5.0
Glyo 28.0 490 1970 0.0 98.0 113.0 5.0
Alag 37.0 63.0 206.0 00 104.0 198.0 5.0
Leuy 35.0 640 201.0 00 1050 145.0 5.0
Alas 38.0 67.0 207.0 0.0 104.0 198.0 5.0
Valg 31.0 580 201.0 0.0 105.0 145.0 5.0
Valy 37.0 60.0 203.0 0.0 1040 196.0 5.0
Valg 28.0 55.0 201.0 00 1050 145.0 5.0
Trpg 37.0 640 204.0 0.0 104.0 198.0 5.0
Leujp 38.0 68.0 204.0 0.0 105.0 144.0 5.0
Trp11 36.0 63.0 1940 0.0 106.0 185.0 5.0
Leuis 38.0 66.0 196.0 0.0 105.0 132.0 5.0
Trpis 37.0 60.0 195.0 00 106.0 182.0 5.0
Leujq 35.0 61.0 195.0 00 105.0 131.0 5.0
Trpis 35.0 64.0 198.0 0.0 106.0 181.0 5.0

13C Chemical Shift
Residue| ¢, Oyy Oz o B Observed Error
(ppm) (ppm) (ppm) () (9 (ppm) (ppm)
Glyo 173.0 91.0 2430 0.0 34.0 175.0 5.0
Leujo 182.0 91.0 2470 0.0 35.0 180.0 5.0

15N-13C Dipolar Splitting

Residue v Observed Error

(kHz) (kHz) (kHz)
Val 1271 0.463 0.1
Glys 1271 0.910 0.1
Alag 1271 0.670 0.1
Leuy 1271 0.820 0.1
Alag 1271 0572 0.1
Valg 1271 0.626 0.1
Valy 1271 0.519 0.1
Valg 1271 0.702 0.1
Trpg 1271 0.487 0.1
Trp11 1271 0.365 0.1
Leujg 1271 0.779 0.1
Trp1s 1271 0454 0.1
Leujs 1271 0.657 0.1
Trp1s 1271 0.507 0.1

15N-1H Dipolar Splitting

Residue| y, ~ Observed Error
(kHz) (kHz) (kHz)
Valy 11335 19.7 2.0
Glyz 11335 176 2.0
Alag 11335 218 2.0
Leuy 11335 17.2 2.0
Alag 11335 20.7 2.0
Valg 11335 182 2.0
Valy 11335 220 2.0
Valg 11335 17.8 2.0
Trpg 11335 20.7 2.0
Leujp |11.335 146 2.0
Trp;y 11335 209 2.0
Leujg 11335 162 2.0
Trpiz |11335 211 2.0
Leujs [11.8335 143 2.0
Trp1s |11.335 215 2.0

121

Valy C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hy |160.0 205.0 5.0
Cp-Hp 153.0 1334 5.0
Cp-Cy1 48.0 9.0 5.0
Cp-Cy2 480 313 5.0

Glyg C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hgp | 160.0 111.6 5.0
Co-Hgo |160.0 192.2 5.0

Alag C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)
Co-Ho 1600 1954 5.0
Ca-Cp 51.0 32.8 5.0

Leuy C-2H Quadrupolar Splitting

Bond QCC Observed Error

(kHz) (kHz) (kHz)
Co-Hy 1600 191.0 5.0
Co-Hpy 1530 121.0 5.0
Co-Hpy 1530 51.2 5.0
v+Hy 1380 8.3 5.0
CyHsy 1300 29.0 5.0
CyHs; 1300 8.3 5.0

Alas C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hg |160.0 188.9 5.0
Ca-Cp 51.0 35.7 5.0

Valg C-2H Quadrupolar Splitting

Bond | QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hy [160.0 187.0 5.0
Cp-Hp 153.0 187.0 5.0
Cp-Cy1 48.0 3.3 5.0
Cg-Cy2 48.0 26.1 5.0

Val7 C-2H Quadrupolar Splitting

Bond | QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hy [160.0 200.0 5.0
Cp-Hp 153.0 709 5.0
Cp-Cy1 48.0 418 5.0
Cp-Cyp 48.0 27.0 5.0

Valg C-2H Quadrupolar Splitting

Bond | QCC Observed Error
(kHz) (kHz) (kHz)
Co-Hy [160.0 174.0 5.0
Cp-Hp 153.0 174.0 5.0
Cp-Cy1 48.0 8.1 5.0
Cp-Cy2 48.0 27.3 5.0

Trpg C-2H Quadrupolar Splitting

Bond | QCC Observed Error
(kHz) (kHz) (kHz)
Csi-Hs1 160.0 46.0 5.0
Co-Hp; 180.0 87.0 5.0
Co-Hpy 1580 155.0 5.0
Cy+Hs1 1710 102.0 5.0
C+Hs1 180.0 85.0 5.0

Leujo C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)

Co-Hy 1600 1960 5.0
Co-Hpy 1530 375 5.0

Co-Hpz 1530 1105 5.0
+Hy 1530 491 5.0
CyHs 1370 115 5.0

C,Hs; 1370 314 5.0

Trpi1 C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)

Cs1-Hp1 1460 770 5.0
Co-Hpi 1780 430 5.0
Co-Hpz 1440 1920 5.0
CyHsi 1630 990 5.0
CyHsi 1780 390 5.0

Leujg C-2H Quadrupolar Splitting

Bond QCC Observed Error

(kHz) (kHz) (kHz)
Ca'Ha 160.0 207.0 ’ 5.0
Co-Hp1 153.0 170.6 5.0
Co-Hpz 153.0 48.5 5.0
Cy-Hy 115.0 76.3 5.0
Cy+Hsr 1080 43.2 5.0
C+Hgs; 108.0 6.4 5.0

Trp13 C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)

Cs1-Hs: 154.0 108.0 5.0

Co-Hp 1790 320 5.0
Co-Hpz 1520 2040 5.0
CyHs1 1670 810 5.0
CyHs; 1790 280 5.0

Leuj4 C-2H Quadrupolar Splitting

Bond QCC Observed Error

(kHz) (kHz) (kHz)
Co-Hy 1600 199.0 5.0
Co-Hp1 153.0 163.2 5.0
Co-Hpy 153.0 60.4 5.0
+Hy 1150 79.1 5.0
CyHs 1010 384 5.0
CyHs 1010 5.5 5.0

Trp1s C-2H Quadrupolar Splitting

Bond QCC Observed Error
(kHz) (kHz) (kHz)
Cs1-Hs; 165.0 123.0 5.0
Cq-Hp; 1810 4.0 5.0
Co-Hpz 164.0 198.0 5.0
CyHs 173.0 59.0 5.0
Cy-Hs1 181.0 1.0 5.0

Trp Indole 15N Chemical Shift

Residue| g, Oyy Oz o B Observed Error

(ppm) (ppm) (ppm) () (3 (ppm) (ppm)
Trpog 430 1140 1670 900 250 1450 5.0
Trp11 430 1040 1500 900 250 1440 5.0
Trpis 450 1170 1650 900 250 1440 5.0
Trpis 430 1200 1670 900 250 1390 5.0

15N-1H Dipolar Splitting

Residue v Observed Error
(kHz) (kHz) (kH2)
Trpg 10.7 132 2.0
Trp11 |10.3 111 2.0
Trpis 10.6 10.1 2.0
Trpis | 109 7.7 2.0

A.2 Atomic Coordinates of the Final Gramicidin Structure

The final structural solution is represented here as atomic
coordinates in CHARMM PDB format in units of angstroms. Both upper
and lower monomers are shown. The residue numbering scheme starts
with the N-terminus formyl blocking group as 1 and ends with the C-
terminus blocking group as 17. Normally, the first Valine residue is termed

1, so be aware of this numbering change.

REMARK 1 Structure refined with:

REMARK 1 TORC (TOtal Refinement of Constraints) v5.4

REMARK 1 Wed Sep 13 00:05:31 1995

REMARK 2 Randal R. Ketchem

REMARK 2 Institute of Molecular Biophysics 904.644.1309 (voice)

REMARK 2 Florida State University 904.644.1366 (FAX)

REMARK 2 Tallahassee, FL 32306-3015 rrk@magnet.fsu.edu (email)
ATOM 1 HA CHO 1 -4.124 -2.176 0.153 0.00 0.00 MONO
ATOM 2 C CHO 1 -3.382 -2.570 0.855 0.00 0.00 MONO
ATOM 3 0 CHO 1 -3.395 -2.314 2.055 0.00 0.00 MONO
ATOM 4 N VAL 2 -2.604 -3.494 0.244 0.00 0.00 MONO
ATOM 5 HN VAL 2 -2.679 -3.730 -0.726 0.00 0.00 MONO
ATOM 6 CA VAL 2 -1.668 -4.304 1.036 0.00 0.00 MONO
ATOM 7 HA VAL 2 -1.953 -4.130 2.066 0.00 0.00 MONO
ATOM 8 CB VAL 2 -1.699 -5.796 0.721 0.00 0.00 MONO
ATOM 9 HB VAL 2 -1.201 -6.107 -0.231 0.00 0.00 MONO
ATOM 10 CGl VAL 2 -0.640 -6.609 1.544 0.00 0.00 MONO
ATOM 11 HG11l VAL 2 -0.736 -7.693 1.307 0.00 0.00 MONO
ATOM 12 HG12 VAL 2 0.400 -6.303 1.302 0.00 0.00 MONO
ATOM 13 HG13 VAL 2 -0.797 -6.464 2.625 0.00 0.00 MONO
ATOM 14 CG2 VAL 2 -3.105 -6.352 0.970 0.00 0.00 MONO
ATOM 15 HG21 VAL 2 -3.097 -7.458 0.891 0.00 0.00 MONO
ATOM 16 HG22 VAL 2 -3.448 -6.063 1.990 0.00 0.00 MONO
ATOM 17 HG23 VAL 2 -3.811 -5.941 0.219 0.00 0.00 MONO
ATOM 18 ¢ VAL 2 -0.282 -3.838 0.751 0.00 0.00 MONO
ATOM 19 0 VAL 2 0.139 -3.929 -0.401 0.00 0.00 MONO
ATOM 20 N GLY 3 0.473 -3.378 1.770 0.00 0.00 MONO
ATOM 21 HN GLY 3 0.104 -3.220 2.697 0.00 0.00 MONO
ATOM 22 CcA GLY 3 1.888 -3.113 1.4%94 0.00 0.00 MONO
ATOM 23 HAl GLY 3 2.463 -4.012 1.660 0.00 0.00 MONO
ATOM 24 HA2 GLY 3 1.951 -2.735 0.513 0.00 0.00 MONO
ATOM 25 C GLY 3 2.467 -2.042 2.344 0.00 0.00 MONO
ATOM 26 O GLY 3 2.334 -2.130 3.557 0.00 0.00 MONO
ATOM 27 N ALA 4 3.158 -1.008 1.786 0.00 0.00 MONO
ATOM 28 HN ALA 4 3.297 -0.983 0.790 0.00 0.00 MONO
ATOM 29 CA ALA 4 3.672 0.112 2.587 0.00 0.00 MONO
ATOM 30 HA ALA 4 3.362 ~-0.098 3.583 0.00 0.00 MONO
ATOM 31 CB ALA 4 5.186 0.355 2.416 0.00 0.00 MONO
ATOM 32 HBl ALA 4 5.501 1.192 3.080 0.00 0.00 MONO
ATOM 33 HB2 ALA 4 5.752 -0.548 2.723 0.00 0.00 MONO
ATOM 34 HB3 ALA 4 5.436 0.619 1.374 0.00 0.00 MONO
ATOM 35 ¢ AlA 4 3.011 1.413 2.234 0.00 0.00 MONO
ATOM 36 O ALA 4 2.761 1.614 1.057 0.00 0.00 MONO
ATOM 37 N LEU 5 2.775 2.301 3.243 0.00 0.00 MONO

126

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

CA
CB

HB1
HB2

CD1

LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU

WWOOMOMOOWMOMWOBPPOWOWODTINIINII I Joaooanaoonoaaaqaoaummunnuunuiutunununuiuioiuiuioiy g wn

OCOORPROOWWNNERE IR WWNE DWW
.

.101
.001
.611
.752
.366
.533
.932
.109
.719
.039

.342
.932
.373
.478
.209
.786
.913
.392
.477
.578
.266
.223
.141
.508
.518
.612
.991
.119
.737
.117
.926
.606
.859
.912
.991
.352
.632
.519
.553
.156
.568
.887
.004
.551
.462
.234
.224
.216
.866
.300
.049
.323
.626
.617
.353
.963
.594
.817
.443
.898
.121

i

COOOOCONMNWWNNMREFRPORMNMNWWLWUOUAUINWE AWWWANINIONNAOJUTAU DS B WWN

L T DL L L UL N A A D B B B |
DO NDNWNWLB B BE_WRNDRE PR

.062
.549
.493
.940
.810
.080
271
.927
.345
.047
.860
.946
.992
.778
.476
.267
.584
2371
.951
.126
.147
.896
.549
.614
.328
.758
.136
.052
.332
.326
.312
.944
.727
.024
.922
.164
.824
.670
.565
.931
.122
.225
.144
.289
.026
.169
.170
.815
.343
.016
.151
.962
.609
.497
.842
.675
.065
.411
.596
.854
.704
.392

NABWUE BRSO PR UVIOUVUTWaEALULBEWWWNWWWUIRWEROEBNWNEBRWOUBMNMNWUEWERERDODNDWIER S D WWN D WERE DD
e o b 4 e 2 s e & 4 s s w e e m s e w s s s s e s e s & % e s s+ & & s & s+ e 6 e e s+ 4 e e .+ e .. e e e e e e e e

[sNeRoNoNoNeolololoNolojoojojojolaolojolojojoaoloNoNoNoNoNoloNoNoNeNeoNoNoNoNolaNoloNoNoNoNoloNoloaloNeoNoNoloNoRoloRoRoRe R

[=NeNoNeNoloNoNo oo NoNo o oo oo oo Ro oo Ro oo Ro E-Ro e NoNe NoNoNoNaoNo NeoNoNoNoNoNeoNoNoNeNoNoNoloNoNoNoNeoloNoNo R o RoRo R o R e N)
P R e e e P N ey

MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
l6l

HB1
HB2

CD2
CD1
HD1
NE1
HE1l
CE2
CE3
HE3
Ccz2
HZ2
cz3
HZ3

HB1
HB2

VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP

W WWWIWwWWwWWwWWwWwWwWwwww

| U L
ORrROOO0OOCOO

COORBRBNNNOAAABEUIVUAUTBUBWWWWWWADNBBIDAMLOADMURUUVUVUGUUIAWWNONERRDR P R

.363
.778
.246
.128
.747
.709
.792
.465
.582
.489
.944
.344
.416
.257
.518
.641
.599
.406
.001
.133
.786
.235
.018
.616
.857
.527
.846
.153
.690
.555
.917
.979
.456
.066
.547
.322
.641
.651
.660
.476
.546
.192
.889
.540
.583
.867
.704
.235
.953
.957
.327
.586
.569
.168
.655
.475
.399
.565
.558
.443
.556
.386

Wi WWNDNNNDEPEDNDNNWUERWWWRWNNNNDNDNDOOO

.400
.201
.908
.148
.565
.673
.248
.296
.555
.661
.236
.274
.801
784
.299
.266
.648
.744
.282
.386
.598
.632
.922
.869
.113
.217
.612
.883
.297
.584
231
.956
.660
.003
.612
.629
.146
.332
.694
.259
.127
.264
.919
.402
.980
.211
.781
.251

536

.164
.852
.072
.219
.086
.085
L7217
.520
.469
.620
.035
.878
.581

oy
POUWOANVWIOVWOWOWOONOUVWRINANANONUANONARUTONNRNNOVOVOVOANNUOATONIUIONODABUITULIR VUL TN U 0

[y

oy

.031
.052
.294
.311
.310
.416
.495
272
.966
.976
.964
.729
.946
.163
.349
.358
.077
.133
.803
.707
.197
.476
.879
.769

504

.053
.886
.913
.580
.783
.676
.470
.347
.399
.375
.095
.781
.640
.829
.718
.600
.592
.410
.668
.251
.595
.104
.534
.325
.976
.019
.331
.425
.057
.037
.469
.676
.824
.833
.523
.591
.344

[eNoNeNeNeNoNoloNoNo o oo oo X E-R=-NojleRoloNoleNe oo o lloNoloNeNalleNeNeoNeNoloNoNoNoNoloReoNoNoNoNoNeoloReoNo oo RoReo oo Ro Ro K]
P N T I R T

[=NeNeloNoNoNoNoleaoRollejojoeNejoRoloBoBolelelolooNoBoNalaNoNoRoRoNoNoNoNoNoNoloNoNoNoNololoReoNeoloRoloRoReRoNoNoloReRe R e
R IR I R T T T T N

MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATCOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

HB1
HB2
cG

CD2
cD1
HD1
NE1
HE1
CE2
CE3
HE3
cz2
HZ2
Cz3
HZ3
CH2

HB1
HB2
CG
CD2
CDl
HD1
NE1
HEl
CE2
CE3
HE3
Ccz2
HZ2
CzZ3
HZ3
CH2
HH2
C

TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP

NI ER BB NWWNDNNORNNP, OO

.442
.584
.489
.760
.491
.803
.641
.958
.433
.346
.827
.686
.196
.607
.902
.256
.191
.879
.177
.776
.561
.159
.414
.783
.331
.343
.287
.393
.349
.306
371
.117
.922
.981
.909
.369
.359
.093
.787
.009
.897
.884
.232
.289
.244
.485
.243
.092
.761
.147
.740
.255
.099
.273
.129
.937
.986
.917
.981
.643
.698
.085

CORPPWMWWUIBWLEUIEUTERNWWWNWONIANSNOOUIANO IO WUTU

[| L |
POOCONMKPREPE OO

R WP SR OO0 OO0

.810
.961
.375
.756
.916
.734
.666
.096
.566
.474
.856
.110
.747
.039
.986
.865
.337
.350
.845
.391
.784
.056
.847
.359
.452
.258
.568
.654
.486
.485
.682
.224
.525
.780
.515
.470
.811
.822
.700
.670
.560
.379
.302
.495
.281
.542
.361
.533
.086

357

.409
.922
.127
.296
.868
.327
.677
.957
.245
.016
.465
.468

OWJOANAJOWI

.259
.716
.080
.504
.344
.159
.548
.368
.440
.280
.563
.165
.874
.987
.949

.634
.163
.079
.142
.028
.029
.995
571
.592
.080
.758
.998
.643
.167
.022
.845
.686
.900
.221
.649
.900
.102
.284
.311
.994
.061
.675
.581
.199
.131
.305
.356
.224
.369
.143
.115
.967
.422
.599
.157
.447
.409
.257
.884
.707
.639

[=NaoNoNololoNoRololloleleojojojoolelolaNoNeNoNoNo ool aNoNoNeNoNeNoNoNoNaloNoNoNoNoNoNoNoNoRoReloloNololoNoleReRoRoRoReRe R)
[N eNeoNoNoNoNoNoNoNoNeNe o oo NoNoojolNoooNoNoRloloooNolleNeNo NoNoNeoloNoNoNoNoNololoNoNoNoNoNo oo NoRoNoNoloNoloRoNoRo Ro o)

MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATCM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

N
CA

CB
HB1
HB2
CG
HG
CcD1
HD11
HD12
HD13

HB1
HB2
CG

CD2
CcD1
HD1
NE1
HE1
CE2
CE3
HE3
cz2
HZ2
CcZ3
HZ3
CH2
HH2

LEU
LEU

LEU
LEU
LEU
LEU
LEU

LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP

DN

U NWWWERRNNNORPRORRERPNEMMDMNNMNWLWNDNOOA WWERNREO

]]] i 1 1]]]
PR RPN WWS

.402
.900
.530
.212
.571
.913
.353
.286
.295
.015
.493
.970
.410
.093
.991
.151
.222
.312
.439
.898
.001
.136
.931
.255
.490
.178
.915
.274
.115
.541
.577
.716
.067
.862
.007
.443
.238
.239
.849
.024
.517
.715
.987
.973
.697
.476
.057
.132
.007
.456
.355
.416
.076
.124
.382
.395
.604
.679
.668
.953
.699
.201

-2.347
-2.309
~3.489
-3.674
-4.535
-4.181
~4.520
-6.014
-6.431
-7.066
-7.962
-7.412
-6.614
~6.241
-7.315
-5.922
~-5.675
-3.188
-2.975
-3.114
-3.332
-2.803
-2.829
-3.849
-3.865
-3.558
-5.269
-6.241
-5.886
~-5.424
-7.154
-7.791
-7.400
-6.191
-5.314
-8.520
-9.380
-7.327
-7.305
-8.476
-9.314
-1.411
-1.002
-0.651
-0.964
.697
.215
263
.780
.140
.410
.128
.639
.176
.570
.314
.494
.730
.304
.130
.796
.107

AT B WWNNNMNMOMNMNMNOOORERLO

130

.665
.522
.642
.620
.149
.151
.355
.452
.680
.341
.735
.897
.527
.372
.628
.884
.318
.544
.749
.942
.965
.670
.729
.423
.339
.973
.851
.007
.053
.937
.045
.765
.791
.675
.060
.260
.881
.146
.136
.923
.462
.387
.261
.470
.371
.387
.493
.278
.340
.132
.350
.541
.791
.153
.855
.055
.244
.726
.036
.066
.721
.231

[eNeNeoNe o oo loloRoliv oo jaojala i~ elo s oo ool oo Re o NoNololoNoNoNoNoNoNesNoNololoNoNeoNoNoNeNoloNoNoloNoRoNoloRoRe R el =)

[=ReNoNeNoReReNo o NoloBolololoBoNoRololo oo o ole e ol oNo ol oo laNaNoNeloNoNoloNoNeNoNoNoNaoNoNoloNoloNo oo Ro o RoRe e R o Ne)
D e I T T T T T T T

MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
MONO
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

287
288
289

291
292
293
294
295
296
297
298
299
300
301
302

304
305
306
307
308

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

HB1
HB2
CG
HG
CD1
HD1l
HD12
HD13
cD2

NSNS oo AN TN NTUTVTOTTUTW T AU GTUT S R R DD R R DR B PR WWWWWWWihNNDNNDNNDNDNDNND

[t 1 1 1 1 1 t
OWWWWOoOOOO

[N Y F N Y T DY N WA N B S U U R |
MU WHENWNONNNDMRP WNNRE P OO

COORPROOWWNNRPPWWNDRERFDNDMWNNDWOUUUIWWWWONNRDEOOO

.640
.736
.400
.797
.105
.097
.448
.811
.282
.13¢9
.473
.104

.463
.951
.467
.334
.158
.297
.672
.362
.186
.501
.752
.436
.011
.761
.775
.101
.001
.611
.752
.366
.533
.932
.109
.719
.039
.391
.342
.932
.373
.478
.209
.786
.913
.392
477
.578
.266
.223
.141
.508
.518
.612
.991
.119
.737
.117
.926
.606
.859

.609
.693
.303
.464
.352
.458
.063
.941
.838
.929
.378
.220
.113
.012
.735
.042
.130
.008
.983
.112
.098
.355
.192
.548
-0.619
-1.413
-1.614
-2.301
-2.062
-3.549
-3.493
-4.940
~-4.810
~-5.080
~6.271
-5.927
-7.345
-8.047
-6.860
-7.946
-6.992
-7.778
~-7.476
-6.267
~3.584
-3.371
-3.951
-4.126
-4.147
-3.896
-5.549
-5.614
-6.328
-5.758
-3.136
-3.052
-2.332
-2.326
-1.312
-0.944
-1.727
-2.024

OO0OORNMMMEWWWWWUIANOAGOG X0

rot
oo

131

.544
.307
.302
.625
.970
.891
.990
.219
.751
.401
.770
.697
.494
.660
.513
.344
.557
.786
.790
.587
.583
.416
.080
.723
.374
.234
.057
.243
171
.960
.967
.075
.001
.308
.322
.995
.056
.593
773
.353
.384
.931
.547
.953
.849
.051
.276
.294
.115
.105
.988
.619
.316
.938
.740
.578
.695
.627
.348
.350
.435
.481

[eNeleololeNeleReNeoleNo oo ool oo oo o lojo oo le o s Ne o Ne NoNo o NoNo NoNoNaNoNoNoNoNoNoNoNoNoNeNoRoloRololoNoNo N ol o Ne N o
R I R R T T T e

[=N=jeleloBoBolool=)=2=jejsjejojejalajejejcloclclcolol=Ne oo NeNaeNaNoNeoNeNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoloRololoRoNoNoReNo Ne

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

HB1
HB2

CD2
CD1
HD1
NE1
HEL
CE2
CE3
HE3
cz2
HZ2
cz3
HZ3

VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP

WWOWWOWWOWOUWYWOWYWWYWWWIWIOWIWOWO OO 000000 MO MO I3~~~

-5.
-6.
-5.
-5.
.519
.553
.156
.568
.887
.004
.551
.462
.234
.224
.216
.866
.300
.049
.323
.626
.617
.353
.963
.594
.817
.443
.898
.121
.363
.778
.246
.128
.747
.709
.792
.465
.582
.489
.944
.344
.416
.257
.518
.641
.599
.406
.001
.133
.786
.235
.018
.616
.857
.527
.846
.153
.690
.555
.917
.979
.456
.066

[A | L S S T Y TR I U N S S S S S N NN NN N SN (N U |
POOOOQOQOoOORrRrRORPRPRPUVUIOCUMIbWUMIbWhWWWWbhWOARNSO

|
R BR R B POV WWINDINODERPNDRERERRO

912
991
352
632

|
N

.922
.164
. 824
.670
.565
.931
.122
.225
.144
.289
.026
.169
.170
.815
.343
.016
.151
.962
.609
.497
.842
.675
.065
.411
.596
.854
.704
.392
.400
.201
.908
.148
.565
.673
.248

[| L L L
QOO0 OONWW

.555
.661
.236
.274
.801
.784
299
266
648
.744
.282
.386
.598
.632
.922
.869
.113
.217
.612
.883
.297
.584
.231
.956
.660
.003

NOANNPSINUVWWRSWERENMNODERERDDDNDUUITOIOUN NI EE WWNNRDNDNDNDWN WS & B WENDR B

132

.513
.545
.830
.468
.988
.816
.037
.769
.260
.473
.675
.684
.525
.538
.368
.548
.678
.569
.933
.512
.951
.960
.662
.925
.214
.065
.187
.117
.031
.052
.294
.311
.310
.416
.495
.272
.966
.976
.964
.729
.946
.163
.349
.358
.077
.133
.803
.707
.197
476
.879
.769
.504
.053
.886
.913
.580
.783
.676
.470
.347
.399

[oReNoNoNoNoNoNoRoNoNoRojoBaolojalojojojoNoloNojlaoNeNoloBooNoNolooeNoloNoNeNoNalsBoNoNoloNoNeNoNeoNoNololoNoNaRoNoRo ol oRo R)

[oNeolololelololelololelejoojojleloleeleoleolejolololoeoleololeololeoloNcNoNolololsNolololoNoNoNolsNoleoNoNeoNoNololoNololoNoNoN el e

XROT

XROT

XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

CH2

HB1
HB2

CD2
Ccnl
HD1
NE1
HEL
CE2
CE3
HE3
Ccz2
HZ2
CZ3

CB
HB1
HB2
CG
HG
Ccbl
HD11
HD12
HD13
Ccp2
HD21

TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU

OBV HARNWWNNORNROOOOOREPENNNOOOABR B UITUIAOUTE U B WWWWWWb S

|2 T I D T T Y [Y N Y O Y N N S |
oo~ LwWwWwWwererLrP o

.547
.322
.641
.651
.660
.476
.546
.192
.889
.540
.583
.867
.704
.235
.953
.957
.327
.586
.569

.168
.655

.475
.399

.565
.558
.443
.556
.386
.442
.584
.489
.760
.491
.803
.641
.958
.433
.346
.827
.686
.196
.607
.902
.256
.121
.879
.177
.776
.561
.159

.414
.783
.331
.343
.287
.393
.349
.306
371
.117
.922
.981

7.612

8.629

0.146
-0.332
-0.694
-0.259
-2.127
-2.264
-2.919
-2.402
-3.980
-3.211
-3.781
-4.251
-4.536
-5.164
-3.852
-2.072
-2.219
-1.086
-2.085
-2.727
-2.520
-3.469
-3.620
-4.035

-6

.375
-6.
-6.
-5.
.829
.718
.600
.592
.410
.668
.251
.595
.104
.534
.325
.976
.019
.331
.425
.057
.037
.469
.676
.824
.833
.523
.591
.344
.259
.716
.080
.504
.344
.159
.548
.368
.440
.280

095
781
640

.165
.874
.987
.949
.905
.634
-163
.079
.142
.028
.029
.995
.571
.592
.080
.758
.998
.643
.167
.022
.845
.686
-900

[eNeoReoNeoNoRolaleoNoloRolojo oo oleloloBoleeolooBoloNoNoloNoloNoloNaRoleoNoNoNoNoNoNoNeNeoNeNoloRoRoNoNoloNelolololoRoRo ool o]

[~NeNoNoNoNeoNoNeoloRloRolojolololejojojolojoBoojoRololololeloleoloololoNoloNoNoNoNoloNoNoNeoloNoloNoloNoRoNaloNoNoNoloReloRo e

XROT
XROT
XROT

XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT
XROT

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATCM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATCM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

HD22
HD23

0

ca

CB

HB1
HB2
CG

cp2
CD1
HD1
NE1
HEL
CE2
CE3
HE3
Ccz2

HB1
HB2

CD2
Ccp1
HD1
NE1
HEl
CE2
CE3

LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP
TRP

-5.
-5.
.359
.093
.787
.009
.897
.884
.232
.289
.244
.485
.243
.092
.761
.147
.740
.255
.099
273
.129
.937
.986
.917
.981
.643
.698
.085
.402
.900
.530
.212
.571
.913
.353
.286
.295
.015
.493
.970
.410
.093
.991
.151
.222
.312
.439
.898
.001
.136
.931
.255
.490
.178
.915
.274
.115
.541
.577
.716
.067
.862

LI N A O O Y O SR Y Y e U N U Y Y Y D T Y O U NN Y NN NN Y N NN NN (N NN (NN SR SN TN NN NN N T B |
OFRPOORPRRPNEMWLUNWNDLORERRPRPNNNNNMOOLDITITOVOAIODOOANTINANOUWWEWWW

|
EBONMMNWWDNONBRWWPNMREROO

909
369

-2
-3

-1

-0

POOONR = OO

L I R T S SR N T T R T |
WP RPMHPEPOOODOO

AN NN NNWWWRRNDWWD WUV I ~1T0O00 BB B WWNDND R, P

.470
.811
.822
-0.
.670
.560
.379
.302
.495
.281
.542
.36l
.533
.086
.357
.409
.922
L1727
.296

700

.327
.677
.957
.245
.016
.465
.468
.347
.309
.489
.674
.535
.181
.520
.014
.431
.066
.962
.412
.614
.241
.315
.922
.675
.188
.975
.114
.332
.803
.829
.849
.865
.558
.269
.241
.886
.424
.154
.791
.400
.191

134

-12.
-12.
-11.
-13.
-11.
-12.
-10.

-9.
-11.
-12.
-11.
-10.
-11.
-11.
-11.
-13.
-13.
-13.
-13.
-11.

-9.

.515 -10.221
~-11.
-9.
-11.
-9.
-8.
-9.
-11.
-9.
-8.
-10.
-10.
-9.
-11.
-12.
-11.
-12.
-10.
~-7.
-7.
-9.
-10.
-7.
-6.
-8.
-7.
-9.
~8.
-10.
-11.
-10.
-9.
-11.
-12.
-10.
~11.
-11.
-10.
-10.
-9.

[=ReRelojoRoNojoNoRoloNo oo oo ooRel=R=RoRo oo joleNeloNeNoloNoNeNeNoloNoloNoNoNoNoNoNo o RoNeReNo oo Rolol o Ro R Re ReoRe Reo R o)

[el=jefelsioi=ReleleloNojeici=A =R =R=NohelelololofeRo oo No oo NeNo e loNolo NoloNoNoNoNoNoNoNoNoNoNoNoloRo o Ro e RoRoRe e Re Ro X
IR R R e e P ey

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

HE3
cz2

HB1
HB2
OH1
HO1

TRP
TRP
TRP

UV UTAWWWNODNDNNDNOPRP,RORRFRFND

.007
.443
.238
.239
.849
.024
.517
.715
.987
.973
.697
.476
.057
.132
.007
.456
.355
.416
.076

.314
.520
.380
.327
.305
.476
.314
.411
.002
.651
.964
.697
.215
.263
.780
.140
.410
.128
.639

QO R P WOW-~JwWwWouw

UL A e |
NMNOOOR O

135

.060
.260
.881
.146
.136
.923
.462
.387
.261
.470
.371
.387
.493
.278
.340
.132
.350
.541
.791

jejoloNeoleoNoloNaNoRoNoNeNolleNoNoNeNo)

= NeleloRoNolloNeloleNoloNoNoleoNoNoNoNae)
R R R R

A.3 Analysis of the Final Structure

A.3.1 Torec OQutput

The experimental observables used in the determination and
refinement of the final structure are compared here to the observables
calculated from the final structure coordinates. The individual and final
penalties are also shown. The residue numbering scheme follows that
shown in Appendix A.2. An asterisk next to a value in the calc-obs column
indicates a value outside of the range of the defined experimental error. The
first column names the interaction: ncs for 15N chemical shift, ccs for 13Cy
chemical shift, nc for 15N-13C; dipolar splitting, nh for 15N-1H dipolar
splitting, ih for the Trp indole 19N-1H dipolar splitting, dis for the defined
intramolecular hydrogen bond distances, c¢d for C-2H quadrupolar

splittings, and e for the CHARMM energy.

calc obs calc-obs expError
ncs VAL 2 = 197.8874 198.0000 -0.1126 5.0000
ncs GLY 3 = 113.0915 113.0000 0.0915 5.0000
nces ALA 4 = 199.0521 198.0000 1.0521 5.0000
ncs LEU 5 = 146.3203 145.0000 1.3203 5.0000
ncs ALA 6 = 197.4664 198.0000 -0.5336 5.0000
ncs VAL 7 = 145.6016 145.0000 0.6016 5.0000
ncs VAL 8 = 195.8142 196.0000 -0.1858 5.0000
ncs VAL 9 = 144.8537 145.0000 -0.1463 5.0000
ncs TRP 10 = 196.4232 198.0000 -1.5768 5.0000
ncs LEU 11 = 143.3842 144.0000 -0.6158 5.0000
ncs TRP 12 = 184.2977 185.0000 ~0.7023 5.0000
ncs LEU 13 = 133.3673 132.0000 1.3673 5.0000
ncs TRP 14 = 182.5719 182.0000 0.5719 5.0000
ncs LEU 15 = 131.8295 131.0000 0.8295 5.0000
ncs TRP 16 = 183.1432 181.0000 2.1432 5.0000
ccs GLY 3 = 174.7820 175.0000 -0.2180 5.0000
ccs LEU 11 = 179.8535 180.0000 -0.1465 5.0000
ics TRP 10 = 145.5269 145.0000 0.5269 5.0000
ics TRP 12 = 143.2984 144.0000 ~0.7016 5.0000
ics TRP 14 = 144.8905 144.0000 0.8905 5.0000
ics TRP 16 = 139.8278 139.0000 0.8278 5.0000

136

E555BEE

nh
nh
nh

nh
nh

ih
ih
ih
ih

dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis
dis

VAL
GLY

VAL

VAL

VAL 9
TRP 10
TRP 12
LEU 13
TRP 14
LEU 15
TRP 16

2
3
4
LEU 5
6
7
8

VAL 2
GLY 3
AlLA 4
LEU 5
ALA 6
vaL 7
VAL 8
VAL 9
TRP 10
LEU 11
TRP 12
LEU 13
TRP 14
LEU 15
TRP 16

TRP 10
TRP 12
TRP 14
TRP 16

10-8HN
3HN-80
30-10HN
5HN-100
50-12HN
7THN-120
70-14HN
9HN-140
90-16HN
11HN-160
10-8N
3N-80
30-10N
5N-100
50-12N
7TN-120
70-14N
9N-140
90-16N
11N-160

0N nWon NN

WNNNWNWNWONEPEMENDEPENDE DS

[ejooRoNoNolaoNaoNoNoNoNoNoNo]

.4948
.9044
.6319

8139
5932

.6448
.5556
.7320
.5259
.3882
.8001
.4649
.6905
.5168

.5873
.2948
.0076
.2604
.3853
.7835
L7106
.7314
.1168
.1844
.9058
L7517
.9581
.0455
L7191

L7142
.3878
.3925
.0661

.9919
.0967
.8321
.3358
.9110
.1941
.8772
.0247
.9015
.0517
.9233
.0342
.8039
.2238
.8506
L1174
.8495
.9914
.8215
. 0402

[=NeoRoNoNoNoloNeNoNoReNoNoNol

NNNONNNVNNDNMNONNERE R R R R RR SRR

.4630
.9100
.6700
.8200
.5720
.6260
.5190
.7020
.4870
.3650
.7790
.4540
.6570
.5070

.7000
.6000
.8000
.2000
.7000
.2000
.0000
.8000
.7000
.6000
.9000
.2000
.1000
.3000
.5000

.2000
.1000
.1000
.7000

.9600
.9600
.9600
.9600
.9600
.9600
.9600
.9600
.9600
.9600
.9100
.9100
.9100
.9100
.9100
.9100
.9100
.9100
.9100
.9100

o

.0318
.0056
.0381
.0061
.0212
.0188
.0366
.0300
.0389
.0232
.0211
.0109
.0335
.0098

11 1
(=N N =)

[eNeoNoloNaoNoNoNolNeNe)

.8873
.3052
.2076
.0604
.6853
.4165
.2894
.0686
.4168
.5844
.0058
.4483
.1419
.2545
.7809

|
[aeNeNeNaNel

i1 8 9 [
COO0OOPRPROPrPOOO

-0.4858

0.2878
-0.7075
-0.6339

0.0319
0.1367
-0.1279
0.3758*
-0.0490
0.2341
-0.0828
0.0647
-0.0585
0.0917
0.0133
0.1242
0.1061
0.3138*
-0.0594
0.2074
0.0605
0.0814
0.0885
0.1302

137

[eNoloNololoNeNolololoRoloeNe]

NN NDONDNNDNNDNDNDDNDNDNON

NN N

[eNeNeNoReNololoNololoRo oo o No oo lNo N ol

.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000

.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000
.3000

3000
3000

.3000
.3000
.3000
.3000
.3000
.3000

angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle

angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle

angle
angle
angle
angle

[2)
w

OO VNOUVWERERNOEN

PNOOROIRWWOUVO

N W

cd
cd
cd
cd
cd

cd
cd
cd
cd

cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd

VAL
VAL
VAL
VAL
GLY
GLY

LEU
LEU
LEU
LEU
LEU
LEU

VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
TRP
TRP
TRP
TRP
TRP
LEU
LEU
LEU
LEU
LEU
LEU
TRP

WWOWWOWOVWOOOMONIDINaaoaauumIuToUITuER B WWRNDNNDDND

L L { I | | | (O e || | L | | | | | L | ¢ L £ | | | [| | O { | O [| O {1 O ¥ O | O T VY I S T N [BN

205.
134.
.2539
.1533
111.
192.
195.
.8416
191.
120.
.5136
.0690
.4882
.8639
.3186
.4792
.0947
.2339
.7416
.9335
.5815
.9837
.0157
.1458
.7187
.3695
.8195
.9835
.0145
.7751
.0605
.3379
.9548
.3748
.0792
.7402
.2236
.2494
.9523
.6526
.1451
.0149
.2901
L7762
.8554
.1408
.0770
.2755
.0466
.8910
.8030
.6939
.5633
.6487
.6303
.7786
.5842
.0580
.4329
.3482
.1969
.8873

33

8170
7717

5186
4566
5523

1429
9985

205.

133

0000

.4000
.0000
.3000
.6000
.2000
.4000
.8000
.0000
.0000
.2000
.3000
.0000
.3000
.9000
.7000
.0000
.0000
.3000
.1000
.0000
.9000
.8000
.0000
.0000
.0000
.1000
.3000
.0000
.0000
.0000
.0000
.0000
.0000
.5000
.5000
.1000
.5000
.4000
.0000
.0000
.0000
.0000
.0000
.0000
.6000
.5000
.3000
.2000
.4000
.0000
.0000
.0000
.0000
.0000
.0000
.2000
.4000
.1000
.4000
.5000
.0000

.8170
.3717
.7461
.8533
.0814
.2566
.1523
.0416
.1429
.0015
.3136
.7690
.4882
.5639
.4186
.7792
.0947
.2339
5584
8335
.5815
.0837
2157
.1458
7187
.3695
.2805
.6835
.0145
.2249
.0605
.3379
.0452
.6252
.5792
.7598
.1236
.7494
.5523
.3474
.1451
.9851
.2901
.2238
.1446
.5408
.4230
.0245
.8466
.4910
L1970
.3061
.4367
.3513
.3697
.2214
.6158
.3420
.6671
.9482
.6969
L1127

OO OONOOOODOOOWOOORFRPROOOOOOORORPOOODQOOPRODOORNMNEO

] I
[oN e Ne)

I | R R A e e U [
OFRPPFPWOOOOOOQOOORNNODOOO

138

curuuuouuuuuuonuUuuuuuuunuTnouuouUuuoLuUUITUUUOIUOTUuTUuLLOUOUOTUOoouoa o ougn

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle
angle

L | | | £ I [(L | | | | | L | | (| | | Ve | | L { | O O { I | { I | | | I T A | 2 | VO [T | IO { A T I [{ |

=
~

o
»
e

RO ARNNONUIWNOWARWWOUOWANBERONORUVOWLINRANONDOWWROUI U JOWN OO N DD G -] N < W o

cd TRP 16 =
cd TRP 16 =
cd TRP 16 =
cd TRP 16 =

penalty
NCS 0.2882
CcCs 0.0014
Ics 0.0450
NC 0.4703
NH 0.7394
IH 0.1526
DIS 2,5794
CD 2,0118
E 370.2383
total

4.0191
198.0052
59.0675
1.0022

lambda
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

=W W WL W

4.
198.
59.
1.

0000
0000
0000
0000

penalty

OANONFHOOO

.8646
.0041
.1349
.4110
.2181
.4579
.7381
.0355
.2383

0.0191
0.0052
0.0675
0.0022

139

5.0000 angle
5.0000 angle
5.0000 angle
5.0000 angle

nwouwounon

124.7
158.9
115.2

54.9

A.3.2 Procheck Qutput

The final structure was analyzed using Procheck (Laskowski et al.,
1993). Procheck is a suite of programs for assessing the overall quality of a
protein structure and for giving an indication of its local, residue-by-
residue reliability. The programs are intended as a tool for highlighting
regions of a étructure that might need closer examination, and for
indicating whether the structure is more or less reliable than others solved
at the same resolution.

Many of the results are in need of clarification due to the alternating
stereochemistry of the amino acids in this peptide. The secondary structure
was identified as an extended strand, participating in a beta ladder, which
can be identified as a beta helix. The residues all map into the core B region
of a Ramachandran map (Ramachandran and Sassiekharan, 1968), but the
Procheck analysis does not plot the D amino acids separately, resulting in
the D amino acids being plotted in non-allowed regions.

As mentioned in Chapter 4, the o torsion angle after refinement is
not 180°. Procheck allows 5.8° standard deviation from 180°, but several of
the peptide linkages in gA are beyond this limit due to the imposed
experimental constraints. For example, the peptide linkage between Valy
and Valg is 164.6°.

The only bad contact reported is between C; on Trpis and N on the
ethanolamine, but these atoms are directly bonded. This bad contact report
can be ignored since Procheck does not recognize the ethanolamine
blocking group.

The covalent geometry is very reasonable except for three instances

in which the N-Cy-Cg bond angle is large. The values for the covalent

140

analysis are taken from small molecule data (Engh and Huber, 1991). The
values in gA are highly influenced by the experimental constraints, most
likely the Co-2H quadrupolar splittings influences the N-Cq-Cp bond angles.
Keeping these justifications in mind, the final structure passes well the

Procheck analysis.

141

Resjidue-by-residue listing for avgref_iupac

This listing highlights the residues in the structure which may need investigation.
The ideal values and standard deviations against which the structure has been compared are shown in the following table:

<= e IDEAL VALUES ~-- -

Chi-1 dihedral Proline Phi Helix Chi-3 Chi-3 Disulph Cmega H-bond Chirality

g{-) trans g(+} Chi-2 phi helix psi rt-hand 1f-hand bond dihedral en. C-alpha
Ideal value 64.1 183.6 -66.7 177.4 -65.4 -65.3 -3%.4 96.8 -85.8 2.0 180.0 -2.0 33.9
Standard deviation 15,7 16,8 15.0 18.5 11.2 11.9 11.3 14.8 10.7 0.1 5.8 0.8 3.5

In the listing below, properties that deviate from these values are highlighted by astorieks and plus-signs. Each asterisk
represents one standard deviation, and each plus-sign represents half a astandard deviation. So, a highlight such as +***, jindicates
that the value of the parameter is between 1.5 and 4.0 standard deviations from the ideal valuas shown above.

Where the deviation is greater than 4.5 standard deviations its numerical value is shown; for example, *5.5%,

The final column gives the maximum deviation in each row, while the maximum column deviations are shown at the end of the listing.
Also at the end are the keys to the codes used for the secondary structure and an plot assi .

Type Seq sec Ramch. Chi-1 dihedral Chi-2 Proline Phi Helix Chi-3 Chi-3 Disulph Omega H-bond Chirality Bad Max
no. struc plot g{-) trans g{+) trans phi helix psi rt-hand lf-hand bond dihedral en. C-alpha contacts dev
1 , ST T - - ST 34.3 -)
+* o
2Aa6LY 2 E - - - - - - - - - - - 176.1 -2.0 - -
3AALA 3 E B - - - - - - - - - - 1859 - 3¢.8 -
. . .
4A LEU 4 E XX - 202.7 - 151.9 - - - - - - 186.7 -1.4 D> -30.5 -
exen . . . *18.4+ ~18.4%
SAMA S E B - - - - - - - - - - 181.2 - 33.8 -
6A VAL [E XX 58.9 - - - - - - - - - 176.2 ~1.8 D> -31.6 -
cery “18.7+ *18.7¢
TAVAL 7 E B - 2086 - - “ - - - - - 164.6 - 32.1 -
. TS e
BAVAL 8 E XX 60.4 - - - - - - - - - 177.8 -2.3 D> ~33.1 -
sesy “19.1¢ *19.1¢
SATRP 9 E B - - -2 - - - - - - - 1870 -3.0 32.5 -
. . .
10A LEV 10 E XX - - -T2.6 - - - - - - - 176.3 -2.2 D> -23.1 -
seer *16.3¢ *16.3%
1A TR 11 E B - - -70.6 - - - - - - - 168.2 -2.5 3156 -
' o
IZALEV 12 E XX - 1832 - - - - - - - - 17446 - D> -38.5 -
saer +20,7¢ *20,7¢
13A TRP 13 E B - - -63.8 - - - - - - - 1671 -2.9 32.8 -
. H .
14A LEU 14 E XX - 1839 - - - - - - - - 178.5 - D> -38.4 -
saey +20.7+ *20.74
1SA TRP 15 E - - - -60.6 - - - - - - - - -2.8 33.1 1
. .
Max deviations: e . * v ' *20.7* * *20.7*
Mean values: 59.7 191.2 -68.4 151.9 - - - - - - 176,55 -2.3 5.0
. 8,3+ *8.3*
Standard deviations: 1.1 13,6 5.9 0.0 - - - - - - 7.1 0.5 33.9
Numbers of values: 2 5 5 1 0 [[} [0 [14 9 14 1
Number of D-amino acids (labelled D>): 3
KEY TO CODES:
Regions of the Ramachandran plot Secondary structure {extended Kabsch/Sander)
A - Core alpha B - residue in ipolated beta-bridge
a =~ Allowed alpha E - extended strand, participates in beta-ladder
~a - Generous alpha ** Generous G - 3-helix {3/10 helix)
B - Core beta H - 4-helix (alpha-helix)
b =~ Allowed beta I -~ 5-helix {pi-helix}
~b - Generous beta ** Genarous S - bend
L =~ Core left-handed alpha T - hydrogen-bonded turn
1 - Allowed left-handed alpha
~1 - Genercus left-handed alpha ** Generous e - extension of beta-strand
p - Allowed epsilon g - extension of 3/10 helix
~p - Genercus epsilon ** Generous h - extension of alpha-helix
XX - Outside major areas wéer pigallowed

142

MAIN CHAIN BOND LENGTHS AND BOND ANGLES

R R R PN Small molecule data
Bond lengths <==-= B @
c-N c-0 CA-C CA-CB N-CA C-N-CA CA-C-N CA-C-O0 CB-CA-C N-CA-C N-CA-CB 0-Cc-N
Any - 1.231 - - - - - - - - - -
{ 0.020)
Pro 1.341 - - - 1.466 122.60 116.90 - - 111.80 103.00 122.00
{ 0.01¢6) { 0.015) (5.00) (1.50) (2.50) (1.10) { 1.40)
Except Pro 1,329 - - - - - - - - - 123.00
(0.014) { 1.60)
Gly - - 1.516 - 1.451 120.60 116.40 120,80 - 112.50 -
{ 0.018) (0,016) ¢ 1.,70) (2.10} (2,10} ¢ 2.90)
Except Gly - - 1.525 -~ - - - 120,80 - - -
(0.021) { 1.70)
Ala - - - 1.521 - - - - 110.50 - -
(0.033) (1.50)
Ile, Thr,Val - - - 1.540 - - - - 109.10 - -
(0.027) { 2.20y .
Except Gly,Pro - - - 1,458 121.70 116.20 - - 111.20 - -
(0.019) (1.80) (2.00) { 2.80})
The rest - - 1.530 - - - - 110.10 - 110.50 -
(0.020) (1.50) { 170

Note. The table above shows the mean values obtained from small molecule data by Engh & Hubar (1991). The values shown in brackets
are standard deviations

S heaidneTTrTrr s D e taeriee e ra s T

< Bond lengths <= Bond angles --e----mmreemccmammaon >
No. Type Seq Max
Chatn no. C-N (] CA-C CA-CB N-CA C-N-CA CA-C-N CA-C-0 CB~CA-C N-CA-C N-CA-CB O-C-N dev

1A FOR 1A - 1.227 - - - - - - - - - 126.15
> .

2A VAL 1 1,354 1.230 1.4%0 1.525 1.469 119.94 118.87 118,33 106.58 108.4% 114.52 122.76
Py o . . . s +*

Aoy 2 1,349 1.223 1.485 - 1.466 117.37 120.70 118.25 - 113.52 - 121.03
v o pes . I . e

4A ALA 3 1,363 1,220 1.501 1.543 1.470 122.16 117.79 117.38 105.63 112.22 113.75 124.80
.e . e ey . . "ee

S5A LEU 4 1.365 1,227 1.506 1.585 1,495 119.51 117.15 119.38 108.61 108.98 118.26 123.29
pees et Py . .60 8,60

6A ALA 5 1,360 1,225 1.49%4 1.548 1.466 119.71 11%.10 118,91 107.69 108.01 114.28 120.59
.. . . . pes pees . o

TA VAL 6 1.247 1.227 1.500 1.548 1.469 120.18 116.71 119.63 108.79 107.04 117.01 123.66
. - . aes xe

8A VAL 7 1.352 1.236 1.512 1.538 1.460 118.73 121.00 122.26 111.26 107.73 113.55 116,74
ey e e . i e geer

9A VAL 8 1.343 1.227 1.518 1.53% 1.449 123.80 116.51 120.88 109.70 110.44 112.78 122,62
. .

10A TRP 9 1.350 1.237 1.531 1.563 1.457 123.42 117.58 123.88 109.84 111.22 113.38 118.54

pes o Py I e

11A LEU 10 1.343 1.227 1.504 1.571 1.456 119.46 115.24 123.04 118.53 110.55 121.67
. I . . reae e

12A TRP 11 1.340 1,232 1.532 1,557 1.438 120.93 113.32 126.77 112.66 112.53 111.31 119.84
. . . T . Py e

13A LEU 12 1.328 1.231 1.533 1.543 1.428 126.06 116.99 121.29 115.70 105.79 99.54 121.67
a . TS + *6.4* "6, 4"

142 TRP 13 1.340 1.231 1.529 1.560 1.450 121.28 115.47 123,67 110.55 111.27 112.20 120,68
Py 4t . .)

15A LEU 14 1.338 1.230 1,545 1.560 1.437 130,38 117.11 121.61 117.82 108.31 97.05 121.23
ey - 4.8 ves . 7.9 . *7,9%

16A TRP 15 1.354 1.229 1.534 1,551 1.469 122.98 115.83 123.70 108.07 114.75 112.71 120.42
Py . .t . . . e Py

17A ETA 15A 1.348 - - 1.534 1.441 123,22 - - - - 113.62 -

. Py .
Max deviations: won - 4. e e v4.8* o arer reee 7,90 vooe *7.9¢

ANALYSIS OF MAIN CHAIN BOND LENGTHS AND BOND ANGLES

(Small molecule data) Number of Min Max Mean Standard
St. dev values value value value daviation
C-N C-NH1 {except Pro) 1.329 0.014 16 1.328 1.365 1.348 0.010
Y .
c-N {Pro) 1.341 0.016 o - - - -
c-0 c-0 1.231 0.020 16 1.220 1.237 1,229 0.004
CA-C CH1E-C texcept Gly) 1.525 0.021 114 1.490 1.54% 1,516 0.017
pes
CH2G*-C {Gly) 1.516 0.018 1 1.485 1.485 1.485 0.000
+* e -

CA-CB CH1E-CHIE (Ala) 1.521 0.033 2 1.543 1.548 1.546 0.003
CH1E-CH1E {Ile,Thr,Val) 1.540 0.027 4 1.525 1.548 1,537 0.008
CH1E-CH2E (the rest) 1.530 0.020 9 1.534 1.585 1.558 0.0148

PeTy .
N-CA NH1-CHI1E {except Gly, Pro)1.458 0.019 15 1.428 1.495 1.457 0.017
- +*
NH1-CH2G* (Gly) 1.451 0.016 1 1.466 1.466 1.466 0.000
N-CHIE {Pro} 1.466 0.015 [- - - -

143

———y

| BOND ANGLES |

D B)
(Small moleculs data) Number of Min Max Mean Standard
Angle X-PLOR labelling Mean sSt. dev values value value value deviation
CA-C-N CHIE-C~NHL (except Gly,Pro)116.2 2.0 14 113.31 121.00 117.05 1.80
. ‘e
CH2G* -C- M1 (cly) 116.4 21 1 120.70 120.70 120,70 0.00
P e "
CH1E-C-N {Pro} 116.9 1.5] - - - -
0-C-N 0-C-NH1 {except Pro) 123.0 1.6 16 116.74 126.15 121.63 2.23
. .
0-C-N {Pro) 122.0 1.4 [- - - -
C-N-CA C-NH1-CH1E {except Gly,Pro)121.7 1.8 15 118.73 130.38 122.12 2.97
+ *4,8%
C-NH1-CH2G* (Gly) 120.6 1.7 b3 117.37 117.37 117.37 0.00
+* . +
C-N-CH1E {Pro) 122,6 5.0 0 = - - -
CA-C-0 CH1E-C-0O (except Gly) 120.8 1.7 14 117.38 126.77 121.55 2.45
. PRI
CH2G*-C-0 (Gly) 120.8 2.1 1 118.25 118.25 118,25 0.00
. . .
CB-CA-C CH3E-CHIE-C {Ala) 110.5 1.5 2 105.63 107.69 106.66 1.03
e s PR
CH1E-CH1E-C (Ile,Thr,Val) 109.1 2.2 4 106.58 111.26 109.08 1.69
.
CH2E-CHI1E-C (the rest) 110,1 1.9 8 108.07 118.53 112.72 3.88
. Ieee) .
N-CA-C RH1-CH1E-C {except Gly,Pro}111.2 2.8 14 105.79 114.75 109.91 2.4
I .
NH1-CH2G*-C (Gly} 112.5 2.9 1 113.52 113.52 113,52 0.00
N-CH1E-C (Pro) 111.8 2.5 0 - - - -
N-CA-CB NH1-CH1E-CH3E (Ala) 110.4 1.5 2 113.75 114.28 114.01 0.26
ve P 1
NH1-CH1E-CHI1E (Ile,Thr,Val} 111.s 1.7 4 112.78 117.01 114.46 1.59
vee e
N-CH1E-CH2E (Pro) 103.0 1.1 [- - - -
NH1-CH1E-CH2E (the rest} 110.5 1.7 9 97.05 118.26 110.52 6.87
7.9 *4.6*

The small molecule data used in the above analysis is from Engh & Huber (1991}, The atom labelling follows that used in the

X-PLOR dictionary, with some additional atoms (marked with an asterisk) as defined by Engh & Huber.

Based on the analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good

B A D €C ONTACTS L I T 1 WNG
biGanT T e e
No. Type o. Type Contact Distance
Chain Atom Chain Atom type {Angstroms)
15 A TRP c -—> 15A A ETA N Main-Het 1.3
RAMACHANDRAN PLOT STATISTICS
Residues in most favoured regions [A.B,L) 6 50.0%
Residues in additional allowed regions (a,b,1,p} [0.0%
Residues in generously allowed regions [-a,~b,~1,~pl ¢ 0.0%
Residues in disallowed regiocns 1Xx) 6 50.0%
Number of non-glycine and non-proline residues 12 100.0%
Number of end-residues (excl. Gly and Pro) 2
Number of glycine residues 1
Numbaer of proline residues [
Total number of residues 15

quality model would be expected to have over 90% in the most favoured regions (E,H,L).

STEREOCHEMISTRY OF MAIN-CHAIN
Comparison values No. of
No. of Parameter Typical Band band widths
Stereochemical parameter data pte value value width from mean
a. \-tage residues in A, B, L 12 50.0 89.7 10.0 -4.0 WORSE
b. Omega angle st dev 14 7. 6.0 3.0 0.4 Inside
c. Bad contacts / 100 residues 1 6.7 1.0 10.0 0.6 Inpide
d. Zeta angle st dev 14 3.9 3.1 1.6 19.3 WORSE
e. H-bond energy st dev 9 0.5 0.6 0.2 -0.2 Inside
£. Overall G-factor 18 -1.4 0.0 0.3 -4.7 WORSE
STEREOCHEMISTRY OF SIDE-CHAIN
Comparison values No. of
No. of Parameter Typical Band band widths
Stereochemical parameter data pts value value width from mean
a. Chi-1 gauche minus st dev 2 1.1 9.0 6.5 -1.2 BETTER
b. Chi-1 trans st dev 5 13,6 11.6 5.3 0.4 Inside
c. Chi-1 gauche plus st dev 5 5.9 10.0 4.9 -0.8 Inside
d. Chi-1 pooled st dev 12 10.3 10.5 4.8 0.0 Inside
@. Chi-2 trans st dev 1 Q.0 15.0 5.0 -3.0 BETTER
MORRIS ET AL. CLASSIFICATION
Mean St.dev Classification
Parameter m & 1 2 3 [} Value Class
Phi-psi distribution - - >75.0% >65.0% >55.0% <55.0% 50.0 4
Chi-1 st.dev. 18.2 6.2 <12.0 <18.2 <24.4 >24.4 6. 1
H-bond energy st dev 0.87 0,24 «<0.6) <0.87 <1.11 >1.11 0.61 1

144

G -FACTORS
Average

Parameter Score Score
Dihedral angles:-

Phi-psi distribution

Chil-chi2 distribution

Chil only

Chi3 & chid

Omega

Main-chain covalent forces:-

Main-chain bond lengths -0.10
Main-chain bond angles -1.90
------ -1.14
sexca
OVERALL AVERAGE ~1.40
s=szs

Ideally, scores should be above -0.5. Values below -1.0 may need investigation.

145

A.4 Program Source Code
A.4.1 CNFCS

CNFCS (CoNFormation with reduction by Chemical Shift) is used to
calculate the (¢, y) torsion angles using the 15N-1H and 15N-13C; dipolar
splittings, using the 15N chemical shifts as filters.

/*
program CNFCS (CoNFormation with reduction by Chemical Shift)

Randal R. Ketchem

Quike Teng

Institute of Molecular Biophysics 904.644.1309 (voice)
Florida State University 904.644.1366 (FAX)
Tallahassee, FL 32306-3015 rrk@magnet.fsu.edu {(email)
*/

/*

This program calculates (phi, psi) torsion angles from 15N-1H and 15N-13C
dipolar splittings. The possible bond components are reduced by
calculating the 15N chemical shift for each bond component pair for each
peptide plane and comparing the calculated chemical shift with the
observed chemical shift. The surviving bond components are then used to
calculate (phi, psi) torsion angles for the dipeptide.

*/

/*
Test data
21.8
0.67
37.0
63.0
206.0
198.0
0.0
104.0
17.2

#include <stdio.h>
#include <math.h>

#define X 0 /* Used as array element */
#define Y 1 /* Used as array element */
#define 2 2 /* Used as array element */
#define PLANEL 0 /* Used as array element */
#define PLANE2 1 /* Used as array element */
#define HV 11.335 /* principle component for N-H */
#define CV 1.271 /* principle component for N-C */

146

#define DEG_PER_RAD 57.2958 /*
#define COMP1 0 /*
#define COMP2 1 /*
#define COMP3 2 /*
#define COMP4 3 /*
#define PHI 0 /*
#define PSI 1 /*
#define BDEG 70.0 /*
#define BLDEG 63.0 /*
#define B2DEG 59.0 /*
#define BI1PRIMEDEG 57.0 /*
#define B2PRIMEDEG 65.0 /*
#define NCL 70.0 /*
#define HNC 122.0 /*
#define PPM RANGE 20.0 /*
#define LN_LNGTH 256 /*
#define SIGN(a) ((a}) < 0.0 ? -1 :
void enter_data(float hnu(2],
float cnu(2],
float sigll[4],
float sig2[4],
float alphad(2],
float betad[2],
char fname_in[])

FILE *workfile;

if((workfile = fopen(fname_in,

{
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf {stderr,
exit(l);
}

fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile, "
fscanf (workfile,

Degrees per radians */

Used as array element: component one */
Used as array element: component two */
Used as array element: component three */
Used as array element: component four */
Used as array element: Phi */

Used as array element: Psi */

angle between 1' and k */

hnk bond angle */

cnk bond angle */

angle between h' and 1' bonds */

angle between ¢' and 1' bonds */

NCL bond angle */

HNC bond angle */

PPM range used in comparing calc to obs */
Line length */

1)

urn)) == NULL)

"\n\t***File '$s' not found***\n", fname_in);
"\nThe file '%s' should be in the form:\n", fname_in);

" \n\t***Do

NOT USE THE LABELS***");

"\n\t***USE ONLY THE NUMBERS!***\n"});
“\nhnu\t\txxx.xx") ;
"\ncnu\t\txxx.xxx") ;
"\nsigmall\t\txxx.xx");
"\nsigma22\t\txxx.xxx") ;
"\nsigma33\t\txxx.xxx");
"\nsigma obs\txxx.xxx");
"\nalphad\t\txxx.xxx");
"\nbetad\t\txxx.xox");
"\nhnu\t\txxx.xxx");
"\ncnu\t\txxo. xxx") ;
"\nsigmall\t\txox.xxx");
"\nsigma22\t\txxx.xxx") ;
"\nsigma33\t\txwx.xe") ;
"\nsigma obs\txxx.xxx");
"\nalphad\t\txoot.xxx");
"\nbetad\t\txx.xxx\n\n") ;

¥f", &hnu(0]);
%f", &cnu[0]);
%f", &sigl[0]);
%fv, &sigl[l]);
$f*, &sigl(2]);
gf", &sigl(3]);
$f", &alphad([0})};
3£, &betad[0]);

147

fscanf (workfile, "%f*, &hnulll):;
fscanf (workfile, "$f", &cnu[ll);
fscanf (workfile, "%f", &sig2(0]);
fscanf (workfile, "%f", &sig2{1});
fscanf (workfile, "%f", &sig2{2]);
fscanf (workfile, "%f", &sig2(3]);
fscanf (workfile, "%$f", &alphad{l]);
fscanf (workfile, "%f", &betad[l]);
}

void gnrcomp(float split,
float bond{4],
float parallel,
int count (4],
int compnum)

bond [COMP1] sqgrt({1.0 + (split/parallel))/3.0);
bond [COMP2] = -bond[COMP1l];

if ((split/parallel) < 1.0)

{

bond [COMP3] sqrt((1.0 - (split/parallel))/3.0);
bond [COMP4) -bond [COMP31;
count [compnum] = 4;

}
else
count [compnum] = 2;

}

void simulat (float hnu[2],
float cnul2],
int totl[4],
float hlbond(4],
float clbond[4],
float h2bond[4],
float c2bond[4])

gnrcomp (hnu [PLANE1], hlbond, HV, totl, COMPl);

gnrcomp (cnu [PLANEL1], clbond, CV, totl, COMP2);

gnrcomp (hnu [PLANE2], h2bond, HV, totl, COMP3);

gnrcomp (cnu [PLANE2], c2bond, CV, totl, COMP4);
}

void write_head(float hnu(2],
float cnu[2],
float sigl(4],
float sig2(4],
float alphad[2],
float betad(2],
int totl[4],
flocat hlbond{4],
float clbondi4],
float h2bond[4],
float cZbond[4],
char fname_out [LN_LNGTH])

FILE *workfile;
int count;

if ((workfiie = fopen(fname_out, "w")) == NULL)

{
printf("Could not open %s.\nData not saved.\n", fname_out);
exit(l);

148

}

}
fprintf (workfile,

fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,

fprintf (workfile,
fprintf (workfile,

fprintf (workfile,
fprintf (workfile,
fprintf(workfile,
fprintf (workfile,
fprintf (workfile,

fprintf (workfile,
fprintf (workfile,

fprintf (workfile,
for (count =

"\n\t\t\t%s", fname_out);

"\n\n\n\t\t\tFirst Plane");

"\n\n\tNH\t\tNC");

"\n\t%6.3£\t\t%6.3£", hnu[PLANEl], cnu[PLANE1l]);
"\n\n\tSigmall\t\tSigma22\t\tSigma33\n");
"\ER7.2E\E\ERT . 2E\E\ERT7. 26",

sigl(0], sigl[l], sigl{2]);

"\n\n\tSigma Obs\talphad\t\tbetad\n");
"\t27.2E\E\EST . 2EN\E\ERT .26,

sigl({3], alphad[0], betad[0]);

"\n\n\n\t\t\tSecond Plane");

"\n\n\tNH\t\tNC") ;

"\n\t%6.3£\e\t%6.3f", hnu[PLANE2], cnu[PLANE2]);
"\n\n\tSigmall\t\tSigma22\t\tSigma33\n");
"\NE&7.2E\E\LS7.2E\E\ERT7 . 2",

sig2[0}, sig2(l], sig2[2]);

"\n\n\tSigma Obs\talphad\t\tbetad\n");
"\t%7.2E\E\ET7.2E\E\ERT7.2E",

sig2(3], alphad(l], betad[1])};

“\n\n\n\tHl Components\n");

0; count < totl[COMPl]; ++count)

fprintf (workfile, "\n\t%8.4f", hlbond[count]);

fprintf (workfile,

"\n\n\n\tCl Components\n");

for (count = 0; count < totl{COMP2]; ++count)

fprintf (workfile,

fprintf (workfile,
for (count =

"\n\t%8.4f", clbond[count]);

"\n\n\n\tH2 Components\n");

0; count < totl[COMP3]; ++count)

fprintf (workfile, "\n\t%8.4f", h2bond[count]);

fprintf (workfile,

"\n\n\n\tC2 Components\n");

for (count = 0; count < totl{[COMP4]; ++count)

fprintf (workfile,

fprintf (workfile,

fclose(workfile) ;

"\n\t%8.4£f", c2bond[count]);

" \nu) ;

void convert_data(float alphad(2],
float betad(2])

{

}

alphad[0]
alphad[1]
betadl0l]
betad[1]

alphad (0] / DEG_PER_RAD;
alphad(l] / DEG_PER_RAD;
betad[0) / DEG_PER_RAD;
betad(1) / DEG_PER_RAD;

void calculate_nh(float nh{3],
float hbond,
float cbond)

float angleh, anglec, nhvector;

angleh
anglec

acos (hbond) ;
acos {cbond) ;

149

nh(Z] = cos(angleh);

nh[Y]) = cos{angleh) * cos{(anglec);

nh(Y] = cos(HNC / DEG_PER_RAD) - nh[Y];

nh(Y] = nh[Y] / sin(anglec);

nh[X] = sqrt(l - pow(nh[Y], 2) - pow(nh[Z] ,2));

nhvector = sqgrt(pow(nh(X], 2) + pow(nh[Y], 2) + pow(nh[Z], 2)):

if (nhvector == 0.0)
printf("\n\nnh == 0. No normalization.\n");

else

{
nh(X] = nh[X] / nhvector;
nh{Y] = nhl[Y] / nhvector;
nh(Z] = nh([2] / nhvector;

}

void calculate_nc(float nc[3],
float cbond)

{
float angle, ncvector;

angle = acos(cbond);

ncfX] = 0.0;
nc{Y) = sin(angle);
ncfzZ] = cos(angle);

ncvector = sqgrt(pow(nc[X], 2) + pow(nc[Y], 2) + pow(ncl[Z], 2));

if {ncvector == 0.0)

printf ("\n\nnc == 0. No normalization.\n");
else
{

nc[X] = nclX] / ncvector;

nclY] = ncl¥] / ncvector;

nc{Z2] = nc([Z] / ncvector;

}

void calculate_ theta(float hbond,
float cbond,
float thetal3])

float nc{3], nhi3];
float ncvec, nhvec;
float y1, v2, v3;
float yprime;

float xci;

calculate_nh(nh, hbond, cbond);
calculate_nc(nc, cbond);

sqrt (pow(nc[X], 2) + pow(nclY], 2) + pow(nc(Z], 2));
sgrt (pow(nh[X], 2) + pow(nh[Y], 2) + pow(nh[Z], 2));

ncvec
nhvec

won

theta[0] = acos(((nc[X]1*nh[X]) + (nc{Y]*nh(Y]) + (ncl(z)*nh{2])) /
(ncvec*nhvec)) ;

xci = acos(nclY]/sart(pow(nclX],2) + pow(nc(Y]l, 2))) * SIGN(nc([X]);

theta[2] = acos(nclz]);

150

({{nc[¥] * nh[2]) - (ncl[2] * nh(Y])) / sin(theta[0])

=):
y2 = (((nc[2] * nh[X]) - (nc[X] * nh(Z])) / sin(theta[0]));
¥3 = (((nclX] * nh[Y)) - (nc[¥] * nh(X])) / sin(thetal[0)));
yprime = (yl * cos(xci)) - (y2 * sin(xci));

thetalll = acos(yprime) * SIGN(y3);
}

void transpose(float matrixl1[3]([3],
float matrix2[3][3])
{

int row, col;

for (row = 0; row < 3; ++row)
for (col = 0; col < 3; ++col)
matrix2[col] [row] = matrixl[row] [col];

}

void matrix_multiply(float matrix1([3] [3],
float matrix2[3] [3],
float result[3]1([3])

int i, j;

for (i = 0; 1 < 3; i++)
for (j = 0; j < 3; j++)
result[i] {j] = matrixl[i]{0]*matrix2[0] [j]
+ matrixl([i] (1]*matrix2[1] (j]
+ matrixl[i] (2] *matrix2(2]{j];
}

void rotate_pas_to_mf (float sigma mf([3][31],
float sigma(4],
float alphad,
float betad)

float rbd[31[3]; /* R{betaD) */

float rad[3](3]; /* R{alphaD) */

float radt (3] (3]); /* R(alphaD)Transpose */

float rbdt (3] [3]; /* R{betaD)Transpose */

float sigma_pas(3]1[3]; /* principle axis system */

float result [3][3]; /* matrix used in calculations */
float resultl{3](3]; /* matrix used in calculations */
float result2([3][3]; /* matrix used in calculations */
rbd[0] [0] = cos(betad); /* R(betaD) matrix, [row] [col] */

rbd ([0} [1] = 0.0;

rbd[0] {2] = sin(betad);

rbd (1] [0} = 0.0;

rbd[11(1)1 = 1.0;

rbda(1]1 (2] = 0.0;

rbd[2] [0] = -sin(betad);

rbd (2] (1] = 0.0;

rbd[2][2] = cos(betad);

transpose(rbd, rbdt);

rad[0] [0] = cos(alphad); /* R(alphaD) matrix, [row][col] */
rad[0] [1] = sin(alphad);

rad[0] (2] = 0.0;

rad[1]) [0] = -sin(alphad);

rad[1] [1] = cos(alphad);

151

rad[1] (2] = 0.0;
rad(2](0] = 0.0;
rad(2] (1] = 0.0;
rad[2]1([2] = 1.0;

transpose(rad, radt);

sigma_pas([0] [0] sigma[0];/* sigma_pas matrix, [row][col] */

sigma_pas([0][1] = 0.0;
sigma_pas[0] (2] = 0.0;
sigma_pas{l1l] (0] = 0.0;
sigma_pas[l] [1]) = sigma[l];
sigma_pas[1][2] = 0.0;
sigma_pas[2] (0] = 0.0;
sigma_pas (2] (1] = 0.0;
sigma_pas (2] {2] = sigma(2];

matrix_multiply(rbd, rad, resultl);
matrix _multiply (resultl, sigma_pas, result2);
matrix_multiply (result2, radt, result);
matrix_multiply (result, rbdt, sigma_mf);

}

void rotate_mf_to_lab(float sigma mf[3][3],
float thetal3],
float sigma_lab(3] [3])

float rt3(31[3]; /* R{theta3) */

float rt2(31(3); /* R{theta2) */

float rt2t[3][3]; /* R{theta2)T */

float rt3t[3][3]; /* R{theta3)T */

float result[3][3]; /* used during matrix multiplication */
float resultl[3][3]; /* used during matrix multiplication */
float result2[3][3]; /* used during matrix multiplication */
rt3[0] [0]) = cos(thetal2]); /* R(theta3) matrix, [row][col] */
rt3(0][1} = 0.0;

rt3[0][2] = -sin{thetal2]);

rt3([1]1[0] = 0.0;

rt3[11{1] = 1.0;

rt3[(11{2] = 0.0;

rt3[2] [0] = sin(thetai2]);

rt3[2]{1] = 0.0;

rt3[2] [2] cos(thetaf2]);

transpose({rt3, rt3t);

rt2[0] [0] = cos(thetall]); /* R(theta2) matrix, [row][col] */
rt2{0} [1] = sin(thetal[l));

rt2[0}[2] = 0.0;

rt2{1]1[0) = -sin{thetalll);

rt2[1] (1] = cos{thetall]};

rt2[1]([2] = 0.0;

rt2[2]1([0] = 0.0;

rt2[2](1] = 0.0;

rt2[2](2] = 1.0;

transpose{rt2, rt2t);
matrix multiply{(rt3, rt2, resultl);

matrix multiply (resultl, sigma_mf, result2);
matrix multiply (result2, rt2t, result);

152

matrix_multiply (result, rt3t, sigma_lab);
}

int cscomput (float sigma(4],
float alphad,
float betad,
float hbond,
float cbond)

float calc_cs;
float thetal(3];
float sigma mf(3][3];
float sigma_lab(3](3];

calculate_theta(hbond, cbond, theta);
rotate_pas_to_mf (sigma_mf, sigma, alphad, betad);
rotate_mf_to_lab(sigma_mf, theta, sigma_lab);
calc_cs = sigma_lab(2] [2];

if((calc_cs < (sigma{3] + PPM_RANGE)) &&
(calc_cs > (sigma[3] - PPM _RANGE)))

{
fprintf (stdout, "cs = %10.4f (%.4f obs)\n", calc_cs, sigma[3]);
return(l);

}

else
return(0) ;

}

void chemshift (int numok(2],
int totl[4],
float planel([2] [16],
float plane2(2][16],
float sigl(4],
float sig2[4],
float alphad[2],
float betad[2],
fleoat hlbond{4],
float clbond(4],
float h2bond{4],
float c2bond[4],
char fname_out [LN_LNGTH])

int countl, count2, count, cs;
FILE *workfile;

numok [0] = O;
for (countl = 0; countl < totl[0]; ++countl)
for (count2 = 0; count2 < totl[1]; ++count2)
{
cs = cscomput{sigl, alphad(0], betad[0], hlbond[countl],
clbond[count2]);

if (cs)

{
planel[0] [numck[0]] = hlbond{countl];
planel([1l] [numck[0}] = clbond{count2];

++numek {0] ;

}

numok{1l] = 0O;

153

for (countl = 0; countl < totl[2); ++countl)
for (count2 = 0; count2 < totl[3]; ++count2)

{
cs = cscomput{sig2, alphad[l], betad[l], h2bond[countl],
c2bond[count2]) ; ’
if (cs)
{
plane2[0] [numok(1]] = h2bond[countl};
plane2[1] [numok([1l]] = c2bond[count2];
++numok [1];
}
}
if ((workfile = fopen(fname_out, "a")) == NULL)

{
printf ("Could not open %s.\nData not saved.\n", fname_out);
exit(1);

}

fprintf(workfile, "\n\n\t\tFirst Plane Combination After CS\n");
for (count = 0; count < numok[0]; ++count)
fprintf (workfile, "\n\t%3i\t%8.4f\t%8.4f",
count+l, planel[0][count], planel([l]{count]};

fprintf(workfile, "\n\n\n\t\tSecond Plane Combination After CS\n");
for (count = 0; count < numok[l]; ++count)
fprintf (workfile, "\n\t%3i\t%8.4f\t%8.4f",
count+1l, plane2[0] {count], plane2[l] [count]);

fprintf (workfile, "\n");

fclose(workfile) ;

}

float zcomput (float bondl,
float bond2,
float betal,
float beta2)

float beta, result;

beta = betal + beta2;
result = (sin(beta2) * bondl + sin(betal) * bond2) / sin(beta);
return(result);

3

void link(£float first[2][16],
float second[2][16],
int numplane[2]
int *numdip,
float quartet[4](32],
float lcomp(2]([32],
char fname_out [LN_LNGTH])

float bl, b2, blprime, b2prime, evalpls, evalmns;
float lambdal, lambda2;

int countl, count2, count;

FILE “*workfile;

bl B1DEG / DEG_PER_RAD;
b2 B2DEG / DEG_PER_RAD;
blprime = B1PRIMEDEG / DEG_PER_RAD;

154

b2prime = B2PRIMEDEG / DEG_PER_RAD;

evalpls = 1.0 / (1.0 + cos(NCL / DEG_PER_RAD));
evalmns = 1.0 / (1.0 - cos(NCL / DEG_PER_RAD));
if ((workfile = fopen(fname_out, "a")) == NULL)

{
printf("Could not open %s.\nData not saved.\n", fname out);
exit(l);

}

fprintf(workfile, "\n\n\t\tResults For Dipeptide Combinations");
fprintf(workfile, "\n\n\tHI\t\tCI\t\tH2\t\tC2\n");

*numdip = 0;
for (countl = 0; countl < numplane([0]; ++countl)
{
lambdal = zcomput (first (0] [countl], first(1l][countl], bl, b2);
for (count2 = 0; count2 < numplane(l]; ++count2)
{
lambda2 = zcomput (second[0] [count2], second[1l] [count2],
blprime, b2prime);
quartet [0] [*numdip] first [0] [countl];
quartet [1] [*numdip] first{1l] [countl];
quartet [2] [*numdip] second[0] [count2];
quartet [3] [*numdip] second[1] [count2];
lcomp[0] [*numdip] = lambdal;
lcomp[l] {*numdip] = lambda2;
fprintf (workfile, "\n%3i", *numdip+l);
for (count = 0; count < 4; ++count)
fprintf (workfile, "\t%8.4f", quartet[count] [*numdip]);
++*numdip;

}
}
fprintf (workfile, "\n\n");
fclose(workfile);

}

void torcomp(float angle(4],
float lcomp2,
float lcompl,
float hcomp,
int torsion,
char fname_out [LN_LNGTH])

float b, betal, topl, bottoml, 1;
float toph, bottomh, hh, h;

int count;

FILE ‘*workfile;

b = BDEG / DEG_PER_RAD;
switch (torsion)
{
case (PHI) :
betal = B1DEG/DEG_PER_RAD;
break;
case(PSI):
betal = B1PRIMEDEG/DEG_PER_RAD;
break;

}

topl = lcomp2 - lcompl * cos(b);

155

bottoml = (sqgrt(1.0 - pow(lcompl, 2))) * sin(b);

1 = acos(topl / bottoml);

toph = hcomp - lcompl * cos{betal);
bottomh = (sqgrt(1.0 - pow(lcompl, 2))) * sin(betal);

hh = toph / bottomh;
if (torsion == PHI)

{

if (hh > 1.0)

hh = 1.0;

if (hh <= -1.0)

hh = -1.0;

}
h = acos(hh);

angle(0]
angle[1]
angle[2]
angle[3]

for (count = 0; count < 4; ++count)

{

}

if ((workfile = fopen(fname_out,

{

3

-angle(0];

-angle(2];

(1 + h) * DEG_PER_RAD;

(1 - h) * DEG_PER_RAD;

if (angle([count] > 180.0)

angle[count] = anglelcount] - 360.0;

if (angle[count] < -180.0)

angle[count] = angle[count] + 360.0;

switch(torsion)

{

/* All possible solutions */

3

case(PHI):

fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
break;

case(PSI):

fprintf(workfile,
fprintf (workfile,
fprintf (workfile,

 fprintf (workfile,

fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf (workfile,
fprintf(workfile,

fclose(workfile);

Il\n") I.

"\t%7.2£",
"\t%7.2£",
"\t%7.2£",
"n\t7.2£",
"\t%7.2£",
"\t%7.2f",
"\t%7.2f",
"\t87.2£",

li\nll) ;
"\E%7. 2,
"\t%7.2£",
"\t%7.2f",
"\t%7.2f",
"\t%7.2f",
“\t$7.2f",
"\t$7.2f",
"\t%7.2f",
“\n\n"};

g)) == NULL)

printf("Could not open %s.\nData not saved.\n", fname_out);
exit(1l);

angle(0]);
angle(0]);
angle(l1]);
angle(1]);
angle(2]);
angle([2]);
angle[3]);
angle(3]);

angle(0]);
angle[2]);
anglell]);
angle(3]);
angle(0]);
angle(2]);
anglefl]);
angle(3]);

156

}

void main(int argc,
char *argvl[])
{
float hlbond(4], clbond{4], h2bond[4]1, c2bond[4];
float hnuf2], cnul[2], alphad(2], betad[2], sigll4], sig2[4];:
float pepl[2][16], pep2(2][16];
float dipep(4](32], lbond[2][32], phiangl4], psiang(4];
int numplane(2], numdipep, oritot(4], count;
char fname_out [LN_LNGTH] ;
FILE *workfile;

if (argc != 2)

{
fprintf (stderr, "Usage: %s filename\n", argv([0]);
exit(2);

}

sprintf (fname_out, “"%s_cnfcs”, argv(l]);

enter_data(hnu, cnu, sigl, sig2, alphad, betad, argv(l]);
simulat (hnu, cnu, oritot, hlbond, clbond, h2bond, c2bond);
write_head(hnu, cnu, sigl, sig2, alphad, betad, oritot, hlbond, clbond,
h2bond, c2bond, fname_out);
convert_data(alphad, betad);
chemshift (numplane, oritot, pepl, pep2, sigl, sig2, alphad, betad,
hlbond, clbond, h2bond, c2bond, fname_out);
link(pepl, pep2, numplane, &numdipep, dipep, lbond, fname_out);
for (count = 0; count < numdipep; ++count)
{
if ((workfile = fopen(fname out, "a")}) == NULL)
{
printf("Could not open %s.\nData not saved.\n", fname out);
exit(l);
}

fprintf (workfile, "\nCombination # %3i", count+l);
fprintf(workfile, "\n\nPair #\t 1\t 2\t 3\t 4\t 5\t 6\t 7\t 8");
fclose(workfile);

torcomp(phiang, lbond({1] [count], lbond{0] [count], dipep({0] [count},
PHI, fname_out);
torcomp (psiang, lbond(0] [count], 1lbond(1l] [count], dipep(2] [count],
PSI, fname_out);
}

printf{"Output stored in '%s‘'\n*, fname_ out);

157

A.4.2 COORDS
COORDS (Calculate cOORDinateS) is used to calculate atomic

coordinates for a diplane orientation and a single (¢, y) torsion angle pair,

as output from CNFCS.

/* program coords.c */
/* to compile on UNIX machine: c¢c coords.c -lm -0 coords */

/*
Randal R. Ketchem
Institute of Molecular Biophysics 904.644.1309 (voice)

Florida State University 904.644.1366 (FAX)
Tallahassee, FL 32306-3015 rrk@magnet.fsu.edu (email)
*/

/*

This program will take as input the direction cosines and (phi, psi)
torsion angles from the program cnfcs and will output the diplane atomic
coordinates as:

oiml hipl
Il |
1 |
ciml cai nipl
/\ /\ /\
/ N\ /N /A
/ \W4 \/ \
caiml ni ci caipl
| I
1 I
hi oi
*/

#include <stdio.h>
#include <math.h>
#define CNH 22.0
#define X

#define Y

#define 2

#define PHI

#define PSI

#define NHTHETAl
#define NCTHETAl
#define NHTHETA2
#define NCTHETA2
#define RAD PER_DEGREE

OCWNHRFROPONMPFE OR

.017453293
#define SIGN(a) (fa) < 0.0? -1 :1)

float caiml_ciml[3]); /* vector from caiml to ciml */
float ciml_oiml[3]; /* vector from ciml to oiml */

float ciml_ni[3]; /* vector from ciml to ni */
float ni_hi[3]; /* vector from ni to hi */
float ni_cail3]: /* vector from ni to cai */
float cai_cil[3]; /* vector from cai to ci */

158

float ci_o0i(3]; /* vector from ci to oi */

float ci_nipl(3]; /* vector from ci to nipl */
float nipl_hipl[3]; /* vector from nipl to hipl */
float nipl_caipl{3]; /* vector from nipl to caipl */

void input_data(flocat theta[4],
float torsion{2])
{

fprintf (stdout, "Enter direction cosines (from cnfcs):\n");

scanf ("3f %f %f %f", &theta[NHTHETAll, &theta[NCTHETAl],
&theta [NHTHETA2], &theta[NCTHETA2]);

theta [NHTHETAl] = acos(theta[NHTHETA1]);
theta [NCTHETAl] = acos(theta[NCTHETAl]);
theta [NHTHETA2] = acos (theta[NHTHETA2]);
theta [NCTHETA2] = acos(theta[NCTHETA2]);

fprintf (stdout, "Enter Phi (degrees): ");

scanf ("%£", &torsion[PHI]);

torsion[PHI] = torsion([PHI] * RAD_PER_DEGREE;

fprintf (stdout, "Enter Psi (degrees): ");

scanf ("$f", &torsion[PSI]);

torsion[PSI] = torsion[PSI] * RAD_PER DEGREE;

fprintf(stdout, "\n");
}

void vectorize(float atoml([3],
float atom2[3],
float vector(3])

{
vector[X] = atom2[X] - atoml{X];
vector[Y] = atom2([Y] - atoml{Y];
vector[Z] = atom2{Z] - atoml([Z];
}

void define_plane (void)

{

/* ¢ alpha sub i minus 1 */
static float caiml(3] {1.386651, 0.000000, 1.986606};

/* ¢ sub i mirus 1 */
static float ciml[3] = {0.000000, 0.000000, 1.340000};
/* o sub i minus 1 */

static float oiml([3]
/* n sub i */

static float ni[3]
/* hsub i */

{-1.028007, 0.000000, 2.033399};

It

{0.000000, 0.000000, 0.000000};

static float hi(3] = {0.868401, 0.000000, -0.542637};
/* ¢ alpha sub i */

static float cail3] = {-1.242893, 0.000000, -0.746805};
/* ¢ sub 1 */

static float ci[3] = {-0.950955, 0.000000, -2.248695};
/* o sub 1 */

static float 0i[3] = {0.214264, 0.000000, -2.672800};

/* n sub i plus 1 */

static float nipl([3] = {-2.035038, 0.000000, -3.036327};
/* h sub i plus 1 */

static float hipl({3] = {-2.984474, 0.000000, -2.652730};
/* ¢ alpha sub i plus 1 */

static float caipl[3] = (-1.908662, 0.000000, -4.480809};

vectorize(caiml, ciml, caiml_ciml);

159

vectorize(ciml, oiml, ciml_oiml);
vectorize(ciml, ni, ciml_ni);
vectorize(ni, hi, ni_hi);
vectorize(ni, cai, ni_cai);
vectorize(cai, ci, cai_ci);
vectorize(ci, oi, ci_oi);
vectorize(ci, nipl, ci_nipl);
vectorize(nipl, hipl, nipl_hipl);
vectorize(nipl, caipl, nipl_caipl);

}

void calculate_nc(float nc(3],
float theta{4])
{
float ncvector;

ne[X]
nclY]
nclz]

0.0;
sin(theta[NCTHETAl]);
cos (theta [NCTHETAL]) ;

ncvector = sqrt(pow(nc(X], 2) + pow{nc([Y]l, 2) + pow(nc([Z], 2));

if (ncvector == 0.0)

fprintf(stderr, "\n\nnc == 0. No normalization.\n");
else
{
nc[X]
nclY]
nclz]

nc[X] /ncvector;
nc{Y] /ncvector;
nc (2] /ncvector;

}
}

void calculate_nh(float nh[3],
float thetal4],
int count)
float nhvector;

nh{z} cos (theta [NHTHETAL]) ;

nh([Y]
nh(Y]
nh(Y]

cos (theta [NHTHETAL]) *cos (theta [NCTHETAL]) ;
cos (CNH*RAD_PER_DEGREE) -nh[Y];
nh(Y]/sin(theta [NCTHETAl)) ;

switch(count)
{
case 0:
nh[X]
break;
case 1:
nh{X]
break;

sqgrt (l-pow(nh{Y], 2)-pow(nh([Z], 2)};

-sgrt (1-pow(nh[Y]}, 2)-pow(nhl[Z], 2));
}
nhvector = sqgrt(pow(nh(X], 2) + pow(nh([Y], 2) + pow(nh[Z], 2));

if (nhvector == 0.0)

fprintf (stderr, "\n\nnh == 0. No normalization.\n");
else
{

nh(X] nh[X] /nhvector;

nhlY] nh([Y] /nhvector;

160

nh{Z] = nh(z]/nhvector;

)
void calculate_y(float y[3],

float ncl[3],
float nh(31)

y[X]

yIY]}

vy (2]
}

((nc[Y¥]*nh(2]) - (ncl[2]*nh(Y])) / sin(CNH*RAD_PER_DEGREE) ;
((nc[X]*nh[Z]) - (nc{Z]*nh([X])) / sin{CNH*RAD_ PER_DEGREE) ;
({nc[X]*nh(Y]) - (nc{Y]*nh([X])) / sin{CNH*RAD PER_DEGREE);

void matrix_multiply(float matrix1([3]1[3],

float matrix2(3},
float result([3])

int i;

for (1 = 0; 1 < 3; i++)

{
result[i] = matrix1([i] [0] *matrix2([0]
+ matrixl (1] (1] *matrix2[1]
+ matrixl(i] [2]) *matrix2[2];
}

}

void rotate_mf_to_lab(float alpha,
float beta,

float vector(3])

float alpha_matrix([3][3];
float beta_matrix[3][3];

float result[3];

alpha_matrix([0] [0] = cos(alpha);
alpha_matrix[0] [1] = sin(alpha)};
alpha_matrix({0] (2] = 0.0;
alpha_matrix([1]1{0] = -sin(alpha);
alpha_matrix([1] {1] = cos(alpha);
alpha_matrix({1][2] = 0.0;
alpha_matrix[2] (0] = 0.0;
alpha_matrix(2][1] = 0.0;
alpha_matrix{2][2] = 1.0;
beta_matrix[0] (0] = cos(beta);
beta_matrix[0][1] = 0.0;
beta_matrix[0] (2] = -sin(beta);
beta_matrix([1] (0] = 0.0;
beta_matrix[1][1] = 1.0;
beta_matrix([1][2] = 0.0;
beta_matrix[2] [0) = sin(beta);
beta_matrix([2]{1] = 0.0;
beta_matrix[2] [2] = cos{(beta);

matrix_multiply (alpha_matrix, vector, result);
matrix_multiply (beta_matrix, result, vector);

}

void rotate_torsion(float about_bond[3],

float angle,
float bond([3])

161

float result(3];

float euler_matrix[3][3];
float euler{3];

float ebetaf4];

float angleprime;

float eulermag;

int count;

angleprime = angle - (180.0 * RAD_PER_DEGREE);

euler[X] = about_bond(X];
euler (Y] = about_bond[Y];
euler{Z] = about_bond[Z];
eulermag = sqrt(pow(euler([X], 2) + pow(euler(Y], 2) + powl(euler[Z], 2));
if (eulermag == 0.0)
fprintf (stderr, "\n\neulermag == 0. No normalization.\n");
else
{
euler[X] = euler[X]/eulermag;
euler[Y] = euler(Y]/eulermag;
euler[Z] = euler([Z]/eulermag;
}
ebeta[0] = cos(angleprime/2.0);
ebeta[l] = euler{X] * sin(angleprime/2.0);
ebeta{2] = euler(Y] * sin(angleprime/2.0);
ebeta([3] = euler(2] * sin(angleprime/2.0);
euler_matrix([0] [0] = pow(ebetal[0], 2) + pow(ebeta[l], 2)

pow(ebetal[2], 2) - pow(ebeta[3], 2);
.0*((ebetal[l] *ebeta[2]) - (ebeta[0]*ebetal3]));
.0*((ebeta[l]l*ebeta[3]) + (ebetal0]l*ebetal2]));
.0*((ebetall] *ebeta[2]) + (ebetal[0]*ebetal3]));
pow(ebetal[0], 2) - pow{ebetal[l], 2)
pow(ebeta(2], 2) - pow({ebeta[3], 2);
.0*((ebeta(2] *ebeta[3]) - (ebetal[0]*ebeta{ll));
.0*((ebeta[l] *ebeta[3]) - (ebetal[0]*ebetal2]));
.0*((ebeta[2] *ebeta[3]) + (ebetal[0]*ebetalll)};
pow(ebetal[0], 2) - pow(ebetall], 2)
pow({ebetal(2], 2) + pow(ebetal[3], 2);

euler_matrix[0] [1]
euler_matrix[0] [2]
euler_matrix[1] (0]
euler matrix([1]{1]

[SCRNC R O |

euler_matrix[1][2]
euler_matrix[2] (0]
euler_matrix(2][1]
euler_matrix[2] (2]

N NN+

matrix_multiply (euler_matrix, bond, result);

for (count = 0; count < 3; ++count)
bond[count] = result[count];

}

float angleize(float a[3],
float bl3],
float c[3])

float vecl[3], vec2[3], temp;

vectorize(a, b, vecl);
vectorize(a, ¢, vecl);

temp = (vecl[X]*vec2(X]) + (vecl[Y])*vec2[Y]) + (vecll[Z]*vec2[Z]);
temp = temp / (sqgrt{pow(vecl[X],2)} + pow(vecl[¥],2) + pow(vecl{Z],2)));
temp = temp / (sqgrt{pow(vec2[X],2) + pow(vec2[Y¥],2) + pow(vec2[z],2)));

return(temp) ;

162

}

void generate_coords(int count,
float thetal4],
float torsion(2})

{
float caiml3]; /* ¢ alpha sub i minus 1 */
float ciml[3]; /* ¢ sub i minus 1 */
float oiml[3]; /* o sub i minus 1 */
float nil[3]; /* n sub i */
float hi[3]; /* h sub i */
float cail3]; /* c alpha sub i */
float cil[3); /* ¢ sub 1 */
float o0i[3]; /* o sub i */
float nipl([3]; /* n sub i plus 1 */
float hipl[3]; /* h sub i plus 1 */
float caipl[3]; /* c alpha sub i plus 1 */

float resultnh, resultnc, zero[3], thetanh, thetanc;
FILE ‘*workfile;

float thetal, thetal, theta2, theta3, torsion0, torsionl;
char headerX{1], headerY[1], headerZ{l];

char name(256];

sprintf (headerX, "X");
sprintf (headerY, "Y");
sprintf (headerz, "2");

ni[X] = 0.0,‘

ni[y] = 0.0;

ni[z] = 0.0;

ciml[X] = -ciml_ni(X]} + ni(X};

ciml [Y] = -ciml_ni[Y] + ni[Y];
ciml([Z] = -ciml_ni[Z] + ni[Z];

oiml [X] = ciml_oiml[X] + ciml[X];
oiml[Y] = ciml_oiml(Y] + ciml[Y];
oiml [Z2] = ciml_oiml([Z] + ciml[Z];
caiml[X] = -caiml_ciml (X] + ciml[X];
caiml[Y] = -caiml_ciml (Y] + ciml[Y];
caiml [Z] = -caiml_ciml (2] + ciml{Z];
hi [X] ni_hi[X] + ni(X];

hilY] = ni_hil¥Y] + nil¥];

hi (2] ni_hi[zZ] + ni(2];

cail[X] = ni_cai(X] + ni(X];
cailY] = ni_cailY] + nilY];
cailz] = ni_cailZ] + ni[Z];
ci[X] = cai_cil[X] + cailX];
cilY] = cai_cil[Y] + cailY]l;
cifz) = cai_ci[Z] + cailZ];
oi[X] ci_oil[X] + ci[X);

oil[Y] ; ci_oi[Y) + cilY];
0i(Z) = ci_oi[Z] + cil[Z]:

ci_nipl([X] + ci[X];

] =
nipllY] = ci_nipl([Y] + cil[Y¥];
] = ci_nipl([Z] + cif2Z];

163

hipl [X] nipl_hipl{X] + nipl{X];

hipl (Y] = nipl_hipl{Y] + nipl{Y};

hipl (2] = nipl_hipl(Z] + nipl{z];
caipl[X] = nipl_caipl([X]} + nipl(X];
caipl[Y] = nipl_caipl[Y] + nipl[Y];
caipl[2] = nipl_caipllz] + nipl[Z];
thetal = cos(theta[NHTHETAl});

thetal = cos(theta[NCTHETAl]);

theta2 = cos(theta[NHTHETA2]);

theta3 = cos(theta[NCTHETAZ]);

torsion0 = torsion[PHI] / RAD_PER DEGREE;
torsionl = torsion[PSI] / RAD_ PER_DEGREE;
zero[X] = nipllX];

zero([Y] = nipllY];

zero[Z] = 0.0;

resultnh = angleize(nipl, hipl, zero);
resultnh = resultnh * SIGN(resultnh);
resultnc = angleize(nipl, ci, zero);
resultnc = resultnc * SIGN(resultnc);
thetanh = theta2 * SIGN(theta2);

thetanc = theta3 * SIGN(theta3);

switch(count)
{
case 0:
sprintf (name, "pos_coords");
break;
case 1:
sprintf (name, "neg_coords");
break;

if (({(resultnh < (thetanh * 1.05)) && (resultnh > (thetanh * 0.95))) &&
({resultnc < (thetanc * 1.05)) && (resultnc > (thetanc * 0.95))))

if ((workfile = fopen(name, "w")) == NULL)

{
fprintf(stderr, "\nCould not open the file %s.\n", name);
fprintf(stderr, "Data not saved.\n");
exit(l);

}

fprintf (workfile, "\n\t\t\t%s\n", name);

fprintf (workfile, "\nInputed Values\n");

fprintf (workfile, "\nFirst Plane\n");

fprintf (workfile, "\tcos(ZNH) Bond Angle:\t%9.4f\n", thetal);
fprincf (workfile, *\tcos({ZNC) Bond Angle:\t%9.4f\n", thetal);
fprintf (workfile, "\tPhi:\t\t\t%9.4f\n", torsion0);

fprintf (workfile, "\nSecond Plane\n");

fprintf(workfile, *\tPsi:\t\t\t%9.4f\n", torsionl);
fprintf(workfile, "\tcos(ZNH) Bond Angle:\t%9.4f\n", theta2);
fprintf(workfile, "\tcos(ZNC) Bond Angle:\t%9.4f\n", theta3);
fprintf(workfile, "\n%20s %14s %14s\n", headerX, headerY, headerZ);

fprint f (workfile, "caiml %14.9f %14.9f %14.9f\n",
caiml(X], caiml[Y], caiml(Z]);

fprint f (workfile, "ciml %14.9f %14.9f %14.9f\n",
ciml{X], ciml(Y], ciml(Z]);

fprintf(workfile, "oiml %14.9f %14.9f %14.9f\n",

164

oiml[X], oiml[¥], oiml[Z]);

fprintf(workfile, "ni $14.9f $14.9f %14.9f\n",
ni[X], ni[¥], ni[2]);

fprintf (workfile, "hi $14.9f %14.9f %14.9f\n",
hil[X], hilY¥], hilz));

fprintf (workfile, "cai $14.9f %14.9f %14.9f\n",
cai({X], cailY], cailz]);

fprintf (workfile, "ci %$14.9f %14.9f %14.9f\n",
ci(X], cilY], ci[2]);

fprintf (workfile, “oi $14.9f %14.9f %14.9f\n",
oi[X], oilY], oi[2]);

fprintf(workfile, "nipl $14.9f %$14.9f %14.9f\n",
nipl(X], nipl(Y}, nipl(2]};

fprintf (workfile, "hipl $14.9f %$14.9f %14.9f\n",

fprintf (workfile, "caipl %14.9f %14.9f %$14.9f\n",

caipl [X], caipl(Y], caipll[2]);

fclose(workfile) ;
fprintf(stdout, "Final coordinates stored in the file: %s\n\n", name);

}

void main(void)

{
float thetal4];
float torsion[2];
float nc[3];
float nh(3];
float y(3];
float alpha, beta;
float temp;
char name[256];
int count;

input_data(theta, torsion);

for(count = 0; count < 2; ++count)
{
define_plane();
calculate_nc(nc, theta);
calculate_nh(nh, theta, count};
calculate y{y, nc, nh);
alpha = acos(y[X])) * SIGN(yI[Z]);
beta = theta[NCTHETALl];

rotate_mf_to_lab(alpha, beta, caiml_ciml);
rotate mf_to_lab(alpha, beta, ciml_oiml);
rotate_mf_to_lab(alpha, beta, ciml_ni);
rotate mf_to_lab(alpha, beta, ni_hi);
rotate_mf_to_lab{alpha, beta, ni_cai);
rotate_mf_to_lab(alpha, beta, cai_ci);
rotate_mf_to_lab(alpha, beta, ci_oi);
rotate_mf_to_lab(alpha, beta, ci_nipl);
rotate_mf_to_lab(alpha, beta, nipl_hipl);
rotate_mf_to_lab(alpha, beta, nipl_caipl);

rotate_torsion(ni_cai, torsion[PHI], cai_ci);
rotate torsion(ni_cai, torsion([PHI], ci_oi);
rotate_torsion(ni_cai, torsion[PHI], ci_nipl);
rotate_torsion(ni_cai, torsion[PHI], nipl_hipl);
rotate_torsion(ni_cai, torsion[PHI], nipl_caipl);

165

rotate_torsion{cai_ci,
rotate_torsion{cai_ci,
rotate_torsion{cai_ci,
rotate_torsion(cai_ci,

generate_coords (count,

torsion[PSI], ci_oi);
torsion[PSI], ci_nipl);
torsion[PSI], nipl_hipl);
torsion[PSI], nipl_caipl);

theta, torsion);

166

A.4.3 TORC

TORC (TOtal Refinement of Constraints) is used to refine the protein
structure so that all of the experimental constraints are met while also
minimizing the CHARMM energy.

A.4.3.1 TORC source code. The following source code is actually a
concatenation of several files that together make up the TORC program.
The individual files, or modules, can be compiled into a self operating
program outside of CHARMM using the Makefile provided in appendix
A.4.3.2, but doing so will only allow structural modifications via torsion
angle moves and will not include the CHARMM energy. The TORC code
can also be compiled as a module within CHARMM, thus allowing for all
structural modification moves and the inclusion of the CHARMM energy.
Please contact me for instructions on using this code within CHARMM.
File Tore.n

Header file containing global declarations.
*/

/*
program TORC (TOtal Refinement of Constraints)

Randal R. Ketchem
Institute of Molecular Biophysics 904.644.1309 (voice)

Florida State University 904.644.1366 (FAX)
Tallahassee, FL 32306-3015 rrk@magnet.fsu.edu (email)
*/

/*

Programming Conventions

Global definitions are declared starting with 'gd' and every following word
capitalized, as in 'gdNumLambda'.

Local definitions are declared starting with 'ld' and every following word
capitalized, as in 'ldNoPrint'.

The convention for definitions is not followed when the definition would be
better as a single word or macro, as in 'TRUE', °'THREE' or 'DSQR(a}'.

Global variables are declared starting with 'g' and every following woxd
capitalized, as in 'gNumRes' or 'gAtoms'.

Internal variables are declared starting with a lowercase and every following

167

word capitalized, as in 'atomTwoType' or ‘resNum' or ‘alpha’.

Functions are declared starting with an uppercase and every following word
capitalized, as in 'CalcNCPenalty' or OutputPDB'. This convention is not
followed for the function 'main'.

*/

/*

Version History

5.4

wwu
N oo

W w
U o

Added compensating peptide plane moves as a move option.

Qutputs C-O and N-H peptide plane orientations before and after
refinement.

Outputs an orientation file containing C-O and N-H peptide plane
orientations for each site as a function of attempted moves.

Added tunneling for peptide planes as a move option. This switches
the orientation of the carbonyl with respect to the channel axis.

Made compensating and tunneling moves possible during both torsion
and atom refinement.

Add torsion moves as an option during atom refinement.

Changed Reads so that data input files define the atom names instead
of having them hard wired.

All move types defined by ratios given in control file.

Add a global translation to each atom move. This is to help the
dimerization step so that the monomers line up. This will have no
effect on the internal values, but will on the charmm energy.

Changed the random number call from rand(), which has a range of 0 to
(2715)-1 and a period of 2732, to random(), which has a range of
(2731)-1 and a period of approximately 16*((2731)-1).

Add indole chemical shift as a penalty.

2dd indole N-H dipolar splitting as a penalty.

Penalty function straight quadratic. Penalty zero only if calc = obs.

Trajectories saved in variables and printed when needed.

Input number of cycles at each T and number of T cycles instead of
calculating those values from the number of modifiable torsion
angles in the limit file.

New gaussian random number generator based on Box-Muller.

Penalty data files are read when they exist, ignored otherwise.

Charmm and Non-Charmm now use same source files.

2Add error to output and adjust output.

Remove B2 and replace with calculation of C-D quadrupole splittings.

Calculate penalty as square of deviation from limit divided by square
of error. Penalty set to zero if within experimental error.

Use individual nuParallel value for each dipole interaction.

Create X, y and z arrays for charmm after each successful rotation.

Output data as a function of successful rotations (trajectories).

Fixed bug in calculation of carbon chemical shift.

Remove totLoop. Refine until numSuccess or penalty is 0.

Input number of rotations per history output in control file.

Can use comments in input files, except for the pdb file. Comment lines
begin with "#". (Of course, only ATOM records are read from pdb
files, so comments could certainly be used in a pdb file.)

Input files use header identifiers instead of requiring a specific data
order.

Fixed reading PDB files with a chain identifier.

CalcResPT now shows all possible n-{(n-2).

CalcResPT calculates pitch based on dipeptide plane.

If final penalty > lowest penalty, set totLoop=1 with lowest penalty
coordinates.

The next version is so much of an upgrade that I skipped v2.0.

It's Alive! Doesn't align helix or read PDB files or many other nice

things, but it moves a single turn around so that the hydrogen bonds

match without deviating from the observed data, which convinced us

168

that the method will work.
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define X
#define Y
#define 2

S)

#define ONE
#define TWO
#define THREE

S]

#define FALSE 0
#define TRUE 1

#ifndef NORMTORC
#define gdatomMove 0
#define gdTorsionMove 1
#endif

/* array values for lambda and number of lambda used */
#define NCS
#define CCS
#define ICS
#define NC
#define NH
#define IH
#define DIS
#define CD
#ifdef NORMTORC

#define gdNumLambda 8
#else

#define E

#define gdNumLambda
#endif

Nt WP O

O

#define gdLineLength 256

#define gdPi 3.1415926535897932
#define gdRadPerDeg (gdPi / 180.0)
#define gdBoltzmann 1.9874643E-03

/* returns double square of 'a' */
static double sqrarg;

#define DSQR(a) ((sgrArg=(a)) == 0.0 ? 0.0 : sqgrArg * sqrArg)

/* returns integer sign of ‘'a‘' */

#define SIGN(a) ({a}y < 0.0?2-1:1)

#define gdversion *TORC (TOtal Refinement of Constraints) v5.4*

/* holds PDB ATOM lines */
typedef struct
{

char header([7];

int atomSegNum;

char atomName[5],
altLocInd[2],
resName (4],
chainldent[2];

int resSegNum;

169

char insertRes([2];
double coords(3],
occupancy,
tempFactor;
int footnoteNum;
} atom;

/* holds begin and end values of residues */
typedef struct
{
int begin,
end;
} residue;

/* holds distance data */
typedef struct
{

int atomOneResNumber ;
char atomOneType [gdLineLength] ;
int atomTwoResNumber ;
char atomTwoType [gdLineLength];
double ala2Distance,
expError;
} disData;

/* holds chemical shift data */
typedef struct
{
int resNum;
char atomlName [gdLineLength],
atom2Name [gdLineLength] ,
atom3Name {gdLineLength] ;
double PAS[3][3],
MF[3] (3],
alpha,
beta,
obsCS,
delta,
expError;
} csData;

/* holds dipolar splitting data */
typedef struct
{

int resNum;
char atomlName [gdLineLength],
atom2Name [gdLineLengthl] ;
double dip,
nuParallel,
expError;
} dipbData;

/* holds 2H quadrupolar splitting data */
typedef struct
{

int resNum;
char atomlName [gdLineLength],
atom2Name [gdLineLength] ;
double quad,
qcc,
expError;
} cdbata;

170

/* holds torsion angle limits */
typedef struct

(

int

char
double

11

imit;

resNum;

bondName [gdLineLength] ;
low,

high;

/* check to see if main() is including this file */
/* if so, declare variables extern */

#ifndef MAIN

#define WHO extern

#else

#de

fine WHO

#endif

WHO

WHO
WHO
WHO

atom

residue
disbhata
csData

dipData

cdData
limit
int

*gAtoms,
*gAtomsInitial,
*gAtomsLowest,
*gAtomsLastState;
*gResidues;
*gDisDatas;
*gNDatas,
*gCDatas,
*glDatas;
*gNCDatas,
*gNHDatas,
*gIHDatas;
*gCDDatas;
*gLimits;
gNumLimits,
gNumAtoms,
gNumRes,
gNumDisData,
gNurNData,
gNumCbhata,
gNumIData,
gNumNCData,
gNunNHData,
gNumIHData,
gNurCDData,
gCyclesAtT, /* number of cycles at one temperature */
gCyclesForceT, /* number of successful moves at which
temperature is forced to change */
gTCycles, /* number of temperature cycles */
/* if set to zero, go until zero numSuccess */
gEquilSteps, /* number of attempted steps at the */
/* initial temperature */
gHistoryFlag, /* 1 outputs history files, 0 does not */
gMovePerHistory, /* number of moves for each history frame */
gSeedFlag, /* 1 uses input as random seed, 0 uses time() */
gOriFlag, /* 1 outputs orientation file, 0 does not */
gMovePerOri, /* number of moves for each orientation */
gTrajFlag, /* 1 outputs trajectory file, 0 does not */
gTrajRes, /* Residue number to be used in trajectory */
gMovePerTraj, /* number of moves for each trajectory */
gNurmMoveCompAtt, / number of attempted */
/* compensate moves/residue */
gNumMoveCompAcc, / number of accepted */
/* compensate moves/residue */

171

gNumMoveTunnAtt, / number of attempted */
/* tunneling moves/residue */
gNurMoveTunnAce, / number of accepted */
/* tunneling moves/residue */
gNurMoveTorsAtt, / number of attempted */
/* torsion moves/residue */
gNumMoveTorsAcc; / number of accepted */
/* torsion moves/residue */
WHO long gSRandSeed, /* input random seed */
gMaxRand; /* maximum long returned by random() */
WHO double gTemperature, /* Current temperature */
gInitTemp, /* Initial temperature */
gKBInitT, /* Initial kbt */
gTempFactor, /* factor for temperature reduction */
gLambda [gdNumLambda] , /* lambda values */
gCompensateRatio, /* Ratio of compensating moves to total */
/* moves */
gTunnelRatio, /* Ratio of tunneling moves to total */
/* moves */
gTorsionRatio, /* Ratio of torsion moves to total moves */
gAtomRatio; /* Ratio of atom moves to total moves */
WHO double gCalcNCS,
gCalcCCs,
gCalcICs,
gCalcNC,
gCalcNH,
gCalcIH,
gCalcCD,
gCalcNCSP,
gCalcCCsP,
gCalcICSP,
gCalcNCP,
gCalcNHP,
gCalcIHP,
gCalcDISP,
gCalcCDP,
gCalcTotP;
#ifndef NORMTORC
WHO double gCalcE,
gCalcEP;
WHO double *gXArray,
*gYArray,
*gZArray,
*gXForce,
*gYForce,
*gZForce,
*gXForceOldState,
*gYForceOldState,
*gZForceOldState,
gbhiffusion;
#endif
WHO FILE *gTrajFile, /* output file for trajectories */
gOriFile; / output file for orientations */

#undef WHO

/* declaration of functions */
double CalcCCSP(int print);
double CalcCDP(int print);
double CalcDeltaR{void);
double CalcDisP(int print);
double CalcICSP(int print);

172

double CalcIHP(int print);
double CalcNCP(int print);
double CalcNCSP{int print);
double CalcNHP(int print);
void CalcNorm(double vecl(3],
double vec2([3],
double noxrm([3]);
void CalcOri (char bondTypel[],
unsigned long int totalCalc,
int print);
double CalcPenalty(double calc,
double obs,
double expError);
int CalcResPT(void); .
void CalcTheta(double atoml[3],
double atom2[3],
double atom3[3],
double thetal31);
double CalcTorangle(double atoml[3],
double atom2 (3],
double atom3[31],
double atomd{3]);
void CalcTorsion(void);
double CalcTotP{int print);
void CopyCoord(atom *atomsIn,
atom *atomsCopy);
void CopyXYZ(atom *atomslIn,
atom *atomsCopy);
void DeclArray(void);
void DoRotation{double rotMat(3] [3],
double atomToRotatel3],
double origin(3]);
double DotProd(double vecl[3],
double vec2(3]);
void EulerMatrix(double ql4],
double rotMatrix([3]1([3]);
void FindAtom(int residueNumber,
char atomToFind[],
double coords (3],
int *found);
double GaussRand (double width);
double GetMag(double low,
double high);
void MF_LF(double sigmaMF[3] (3],
double thetal3],
double sigmaLF[3][3]};
void MakeXYZArray (atom *atomsIn,
double *x,
double *y,
double *z});
void MatMult (double matrixl1{3) {31},
double matrix2([3][3],
double result[3][31);
int Metropolis(double dPenalty);
void MotavgTensor (double tensorIn[3](3],
double motAvgBond[3],
double delta,
double tensorOut[3]({3]);
void MoveAtoms (atom *atomsIn,
double diffusion);
int MoveCompensate(int *resNum);
int MoveTunnel (int *resNum);

173

void Normzlize(double vector[3]);
void OutputPDB{char *fileName,
atom *outAtoms);
void PAS_MF(double sigmaPAS[3] [3],
double alpha,
double beta,
double sigmaMF[3]([3]);
void PrintHelp(void);
int ReadCDData{char fileNamel[]);
int ReadCData(char fileName(l);
void ReadContFile(char fileNamel[]);
int ReadDisFile(char fileName{]);
void ReadFiles (char dirNamel[]);
int ReadIData(char fileName[]);
void ReadLamFile(char fileNamel[]):;
int ReadLimFile(char fileNamel[]);
int ReadNCData({char fileName[]);
int ReadNData{char fileName(]);
int ReadNHData(char fileName({]);
void ReadPDBFile(char fileName[]);
int RotateAtoms(atom *atomsIn,
int resNum,
char torTypel],
double mag);
#ifdef NORMTORC
int main(int argc,
char *argvl(]);
#else
int torc_(char inDirName(],
int *dirLength);
#endif

void Transpose (double
double
void Vectorize (double
double
double

/*
File CalcCCSP.c

matrixIn(3] (3],
matrixOut [3]({3]);
atoml[3],
atom2{3],
vector(3]1);

Calculates the penalty for the carbon chemical

*/

#include “Torc.h"

double CalcCCSP(int print)

{

int resCount,

dataCount,

row,
col,
found;
double atomC[3],
atomN (3],
atomO (3],
/*
PAS([3][3)
alpha,
beta,
*/
delta,
MF[3] [3],
obsCs,

174

shift.

/*
*/

/'k

*/

/*

*/

expError,
theta([3],
LF[3][3],
sigmaAvg(3] (3],
motAvgBond[3],
cal[3],

ca2 (3],

calcCs,
csPenalty = 0.0,
penalty;

gCalcCCS = -1.0;
for(dataCount = 0; dataCount < gNumCData; ++dataCount)

resCount = gCbhatas[dataCount].resNum - 1;

for(row = X; row <= Z; ++row)
{
for(col = X; col <= Z; ++col)

{
PAS[row] [col] = gCDatas([dataCount].PAS[row] [col];
MF [row] [col] = gCDatas(dataCount] .MF{row] [col];
}

alpha = gCDhatas([dataCount].alpha;
beta = gCDatas[dataCount] .beta;

obsCS = gCDhatas[dataCount] .obsCS;
delta = gCDatas{dataCount].delta;
expError = gCDatas[dataCount].expError;

found = FALSE;
if({resCount + 1) < gNumRes)
{

FindAtom(resCount, gCDatas[dataCount].atomlName, atomC, &found);

if (found)
FindAtom(resCount + 1, gCDatas{dataCount].atom2Name,
atomN, &found);
if(found)
Findatom(resCount, gCDatas(dataCount].atom3Name,
atomO, &found);
}

if (! found)
{
if (print)
fprintf(stdout, "cecs %-48%3d%1ls = ccs not found\n',
gAtoms [gResidues [resCount) .begin] . resName,
gAtoms [gResidues[resCount] .begin] . resSeqNum,
gAtoms [gResidues [resCount] .begin] . insertRes) ;
}
else
{
CalcTheta(atomC, atomN, atomO, theta);

PAS_MF(PAS, alpha, beta, MF);

MF_LF(MF, theta, LF);
if (delta == 0.0)

175

}

caleCs = LF(2]1{2];

else

{

}

FindAtom(resCount, "CA", cal, &found);
if (found && ((resCount + 1) < gNumRes))
FindAtom(resCount + 1, "CA", ca2, &found);
if (found)
{
Vectorize(cal, ca2, motAvgBond);
Normalize (motAvgBond) ;
MotavgTensor (LF, motAvgBond, delta, sigmaAvg);
calcCS = sigmaAvg{Z] [2];
}
else
calcCsS = LF[Z] [Z);

penalty = CalcPenalty(calcCS, obsCS, expError);
csPenalty += penalty;

if (print)
{

}

fprintf (stdout, "ccs %-4s%3d%ls = ",
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount] .begin] .resSegum,
gAtoms [gResidues [resCount] .begin] .insertRes) ;
fprintf(stdout, "%10.4f %10.4f %10.4f",
caleCs,
obsCs,
calcCS - obsCS);
if (fabs(calcCS - obsCS) <= expError)
fprintf(stdout, " *);
else
fprintf (stdout, "*");
fprintf (stdout, "%10.4f\n", expError);

if (resCount == gTrajRes - 1)

gCalcCCS = calcCs;

if (print && gNumCData)
fprintf(stdout, “\n");

return({csPenalty);

}
/*

File CalcCDP.c
Calculates the penalty for 2H guadrupole splittings.

*/

#include "Torc.h"

double CalcCDP(int print)

{

int

double

found,

resCount,
dataCount;
cdPenalty = 0.0,
atomC[3],

176

atomD[3],
atomz[3],
vecCD([3],
vecCz (3],
angle,

calcQuad,
obsQuad,
expError,
penalty;

gCalceCD = -1.0;
for(dataCount = 0; dataCount < gNumCDData; ++dataCount)

{

resCount = gCDDatas[dataCount].resNum - 1;

FindAtom{resCount, gCDDatas[dataCount].atomlName, atomC, &found);
if (found)
FindAtom{resCount, gCDDatas[dataCount].atom2Name, atomD, &found);
if (! found)
{
if (print)
fprintf (stdout,
'ed %-4s%3d%1ls = cd not found\n',
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount] .begin] .xresSegNum,
gAtoms [gResidues [resCount] .begin] .insertRes);
}
else
{
obsQuad = gCDDatas[dataCount].quad;
expError = gCDDatas [dataCount) .expError;

atomz[X] = atomC[X];
atomz[Y] = atomC[Y];
atomz{Z] = atomC[Z] + 1.0;

Vectorize(atomC, atomz, vecCz);
Vectorize(atomC, atomD, vecCD);

angle = DotProd(vecCD, vecCZ);

calcQuad = 3.0 * DSQR(angle);

calcQuad = calcQuad - 1.0;

calcQuad = 0.75 * gCDDhatas[dataCount].gcc * calcQuad;
calcQuad = fabs(calcQuad);

penalty = CalcPenalty(calcQuad, obsQuad, expError);
cdPenalty += penalty;

if (print)
{
fprintf(stdout, *cd %-4s%3d%ls = ",
gAtons [gResidues [resCount] .begin] . resName,
gAtoms [gResidues [resCount] .begin] .resSegNum,
gAtoms [gResidues [resCount] .begin] .insertRes) ;
fprintf (stdout, "%$10.4f %10.4f %10.4f",
calcQuad,
obsQuad,
calcgQuad - obsQuad);
if(fabs(calcQuad - obsQuad) <= exXpError)
fprintf(stdout, " ");
else
fprintf(stdout, "*");

177

fprintf(stdout, "$%$10.4f", expError);

fprintf(stdout, " angle = %5.1f\n", acos(angle) / gdRadPerDeg);

}

if (resCount == gTrajRes - 1)
gCalcCD = calcQuad;

}

if (print && gNumCDData)
fprintf(stdout, "\n");

return(cdPenalty) ;
}

/*
File CalcDeltaR.c

Calculates the total atomic dR and rmse between the original and refined

coordinates. Outputs both to stdout, but returns dR only.
*/

#include "Torc.h"

double CalcDeltaR(void)
{

int atomCount;
double rmse,
drR = 0.0;

for{atomCount = 0; atomCount < gNumAtoms; ++atomCount)
{
dR += DSQR(gAtomsInitial [atomCount] .coords [X]
- gAtoms [atomCount] . coords (X])
+ DSQOR (gAtomsInitial [atomCount] .coords|[Y]
- gAtoms[atomCount] .coords [Y])
+ DSQR(gAtomsInitial [atomCount] .coords[Z]
- gAtoms[atomCount] .coords([2]);
}
dR = sqgrt(dR) / (double) gNumAtoms;
rmse = dR * sqgrt((double) gNumAtoms);

fprintf(stdout, "dR of Refined to Original: %15.6e\n", dR);

fprintf(stdout, "RMSE of Refined to Original: %15.6e\n", rmse);

return(dR);
}

/*
File CalcDisP.c
Calculate the penalty for atom distances.

*/

#include "Torc.h"
#include <string.h>

double CalcDisP(int print)
(

int found = FALSE,
dataCount;
double disPenalty = 0.0,
atoml [3],
atom2 [3],

178

calcDis,
obsDis,
expError,
penalty;
char disName [gdLineLength] ;

for (dataCount = 0; dataCount < gNumDisData; ++dataCount)
{
FindAtom(gDisDatas [dataCount] .atomOneResNumber - 1,
gDisDatas [dataCount] .atomOneType,
atoml,
&found) ;
if (found)
FindAtom(gDisDatas [dataCount] .atomTwoResNumber - 1,
gDisDatas [dataCount] . atomTwoType,
atom2,
&found) ;
if (! found)
{
if (print)
{
sprintf (disName, "%d%s-%d%s",
gDisDatas [dataCount] . atomOneResNumber,
gDisDatas[dataCount] .atomOneType,
gDisDatas [dataCount] . atomTwoResNumber,
gDisDatas [dataCount] . atomTwoType) ;
if (strlen(disName) > 8) disName[8] = '\0';
fprintf (stdout, "dis %-8s = dis not found\n", disName);

}
}
else
{
calcDis = sqgrt(DSQR(atom2[X] - atoml[X])

+ DSQR (atom2 (Y] - atoml[Y])

+ DSQR (atom2 [Z] - atoml[Z]));
obsDis = gDisDatas[dataCount].ala2Distance;
expError = gDisDatas{dataCount] .expError;
penalty = CalcPenalty(calcDis, obsDis, expError);
disPenalty += penalty;
if (print)

{
sprintf (disName, "%d%¥s-%d%s",
gDisDatas [dataCount] . atomOneResNumber,
gDisDatas [dataCount] .atomOneType,
gDisDatas [dataCount] . atomTwoResNumber,
gDisDatas [dataCount] .atomTwoType) ;
if (strlen(disName) > 8) disName([8] = '\0';
fprintf (stdout, "dis %-8s = %10.4f %10.4f %10.4f",
disName,
calcDis,
obsDis,
calcDis - obsDis);
if (fabs(calcDis - obsDis) <= expError)
fprintf(stdout, " ");
else
fprintf(stdout, "*");
fprintf (stdout, "%10.4f\n", expError);
}
}

179

if (print && gNumDisData)
fprintf(stdout, "\n");

return(disPenalty);
}

/*

File CalcICSP.c

Calculates the penalty for the indole nitrogen chemical shift.
*/

#include "Torc.h"

double CalcICSP(int print)
{
int resCount,
dataCount,
row,
col,
found;
double atomN[3],

atomC(3],
atomH[3],

/*
PAS[3] [3],
alpha,
beta,

*/
delta,
MF[3] [31],
obsCSs,
expError,
theta([3],
LF([3] (3],
sigmaAvg([3][3],
motAvgBond[3],
cb[3],
cgl31,
calcCs,
csPenalty = 0.0,
penalty;

gCalcICS = -1.0;
for (dataCount = 0; dataCount < gNumIData; ++dataCount)
{

resCount = gIDatas[dataCount].resNum - 1;

for(row = X; row <= Z; ++row)
{
for{col = X; col <= Z; ++col)

{

/*
PAS[row] [col] = gIDatas[dataCount].PAS{row] [col];
*/
MF [row] [col] = gIDatas[dataCount] .MF(row] [col];
}
}
/*
alpha = gIDatas[dataCount].alpha;
beta = gIDatas([dataCount] .beta;
*/

180

/*

*/

obsCS = glIDatas([dataCount] .obsCS;
delta = gIDatas[dataCount] .delta;
expError = gIDatas(dataCount] .expError;

FindAtom(resCount, glDatas(dataCount].atomlName, atomN, &found);
if (found)

FindAtom(resCount, gIDatas([dataCount].atom2Name, atomC, &found);
if (found)

FindAtom(resCount, gIDatas[dataCount].atom3Name, atomH, &found);

if(!found)
{
if (print)
fprintf(stdout, "ics $%-4s%3d%ls = ics not found\n",

gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount].begin] . resSegNum,
gAtoms [gResidues [resCount] .begin].insertRes) ;

}

else

{
CalcTheta{atomN, atomH, atomC, theta);

PAS_MF(PAS, alpha, beta, MF);
MF_LF (MF, theta, LF);

if(delta == 0.0)
caleCS = LF[Z][Z];

else
{
FindAtom(resCount, "CB", cb, &found);
if (found)
FindAtom(resCount, "CG", cg, &found);
if (found)

{
Vectorize(cb, cg, motAvgBond);
Normalize (motAvgBond) ;
MotavgTensor (LF, motAvgBond, delta, sigmaAvg);
calcCS = sigmaAvg(z] [2];

}

else
calcCS = LF[Z][2];

}

penalty = CalcPenalty(calcCS, obsCS, expError);
csPenalty += penalty;

if (print)
{
fprintf(stdout, "ics %-4s%3d%ls = ",
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount].begin] .resSegNum,
gAtoms [gResidues [resCount] .begin] . insertRes) ;
fprintf(stdout, "$10.4f %10.4f %10.4f",
calcCs,
obsCs,
calcCS - obsCS);
if (fabs(calcCS - obsCS) <= expError)
fprintf(stdout, " "};
else
fprintf(stdout, "**);
fprintf(stdout, "%10.4f\n", expError);

181

}

if (resCount == gTrajRes - 1)
gCalcICS = calcCs;

if (print && gNumIData)

fprintf(stdout, "\n");

return (csPenalty);

}
/*

File CalcIHP.c
Calculates the penalty for the IH dipole splitting.

*/

#include "Torc.h"

double
{

int

CalcIHP(int print)

found,
resCount,
dataCount;

double angle,

gCalcIH = -1.0;
for(dataCount =

{

calchip,

obsDip,
expError,
atomN[3],

atomH ({31,

atomz (317,
vecNH([3],
vecNZ([3],
ihPenalty = 0.0,
penalty;

0; dataCount < gNumIHData; ++dataCount)
resCount = gIHDatas{dataCount].resNum - 1;

FindAtom(resCount, gIHDatas[dataCount].atomlName, atomN, &found);
if (found)
FindAtom(resCount, gIHDatas [dataCount].atom2Name, atomH, &found);

if (! found)
{
if(print)
fprintf (stdout, "ih $%-4s%3d%ls = ih not found\n",
gAtoms [gResidues [resCount] .begin] . resName,
gatoms [gResidues [resCount] .begin] . resSeghium,
gaAtoms [gResidues [resCount] .begin] .insertRes) ;
}
else
{
obsDip = gIHDatas [dataCount].dip;
expError = gIHDatas[dataCount] .expError;

atomZ [X] = atomN[X];
atomZ [¥] = atomN[Y];
atomz[Z] = atomN[Z] + 1.0;

182

Vectorize(atomN, atomZ, vecNZ);
Vectorize(atomN, atomH, vecNH);

angle = DotProd(vecNH, vecNZ);

calcDip = 3.0 * DSQR(angle);
calcDip = calcDip - 1.0;
calcDip = gIHDatas[dataCount].nuParallel * fabs(calcDip);

penalty = CalcPenalty(calcDip, obsDip, expError);
ihPenalty += penalty;

if(print)
{
fprintf (stdout, "ih %-4s%3d%1s = ",
gAtoms [gResidues[resCount] .begin] .resName,
gAtoms [gResidues[resCount] .begin] . resSegNum,
gAtoms [gResidues[resCount] .begin].insertRes);
fprintf (stdout, "%10.4f %10.4f %10.4f",
calchip,
obsDip,
calcDip - obsDip);
if (fabs (calcDip - obsDip) <= expError)
fprintf (stdout, " ")
else
fprintf (stdout, "*");
fprintf (stdout, "%10.4f", expError);
fprintf(stdout, " angle = %5.1f\n", acos(angle) / gdRadPerDeg) ;
}

if (resCount == gTrajRes - 1)
gCalcIH = calcDip;

}

if (print && gNumIHData)
fprintf(stdout, "\n");

return(ihPenalty);

}

/*

File CalcNCP.c

Calculates the penalty for the NC dipole splitting.
*/

#include "Torc.h"

double CalcNCP(int print)
{
int found,
resCount,
dataCount;
double angle,
calcDip,
obsDip,
expError,
atomN[3],
atomC[3],
atomz[3],
vecNC[3],
vecNZ 3],
ncPenalty = 0.0,

183

penalty;

gCaleNC = -1.0;
for(dataCount = 0; dataCount < gNumNCData; ++dataCount)
{

resCount = gNCDatas[dataCount].resNum - 1;

found = FALSE;
if{resCount > 0)

{
FindAtom(resCount, gNCDatas[dataCount].atomlName,
atomN, &found);
if (found)
FindAtom(resCount - 1, gNCDatas [dataCount].atom2Name,
atomC, &found);
}
if (1 found)
{
if (print)
fprintf (stdout, "nc %-4s%3d%ls = nc not found\n',
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount] .begin] .resSeqNum,
gAtoms [gResidues [resCount] .begin] . insertRes) ;
}
else
{

obsDip = gNCDatas (dataCount].dip;
expError = gNCDatas[dataCount].expError;

atomZ [X] = atomN([X];
atomZ [Y] = atomN[Y];
atomz (2] = atomN[Z] + 1.0;

Vectorize(atomN, atomZ, vecNZ);
Vectorize{atomN, atomC, vecNC);

angle = DotProd(vecNC, vecNZ);

calcDip = 3.0 * DSQR{angle);

calcDip = calcDip - 1.0;

calcDip = gNCDatas[dataCount] .nuParallel * fabs(calcDip);

penalty = CalcPenalty(calcDip, obsDip, expError);
ncPenalty += penalty;

if (print)
{
fprintf(stdout, "nc %-4s%3d%ls = ",
gAtoms [gResidues [resCount].begin] .resName,
gAtoms [gResidues[resCount] .begin] . resSeqgNum,
gAtoms {gResidues [resCount].begin] .insertRes) ;
fprintf(stdout, "%10.4f %10.4f %10.4f",
calcDip,
obsDip,
calcDip - obsDip);
if (fabs(calcDip - obsDip) <= expError)
fprintf(stdout, " ");
else
fprintf(stdout, "*");
fprintf (stdout, "%10.4f", expError);
fprintf (stdout, " angle = %5.1f\n", acos{angle) / gdRadPerDeq);

184

if(resCount == gTrajRes - 1)
gCalcNC = calcDip;

}

if(print && gNumNCData)
fprintf(stdout, "\n");

return(ncPenalty) ;
}

/*

File CalcNCSP.c

Calculates the penalty for the nitrogen chemical shift.
*/

#include "Torc.h"

double CalcNCSP(int print)
{
int resCount,
dataCount,
YOW,
col,
found;
double atomN[3],
atomC[3],
atomH[3],
/*
PAS{3](3]
alpha,
beta,

*/
delta,
MF[3]1[3],
obsCs,
expError,
thetal3],
LF([31[3],
sigmaAvg[3] [3],
motAvgBond (3],
call3],
ca2[3],
calcCs,
csPenalty = 0.0,
penalty;

gCalcNCS = -1.0;
for(dataCount = 0; dataCount < gNurNData; ++dataCount)
{

resCount = gNDatas[dataCount].resNum - 1;
for(row = X; row <= Z; ++row)

for(col = X; col <= Z; ++col)
{
/*
PAS[row] [col] = gNDatas[dataCount] .PAS[row] [col];
*/
MF [row] [col] = gNDatas [dataCount] .MF[row] [col];

185

/*

*/

/*

*/

}

alpha = gNDatas{dataCount].alpha;
beta = gNDatas [dataCount] .beta;

obsCS gNDatas [dataCount].obsCS;
delta = gNDatas[dataCount].delta;
expBError = gNDatas[dataCount].expError;

found = FALSE;
if(resCount > 0)
{
FindAtom(resCount, gNDatas[dataCount].atomlName,
atomN, &found);
if (found)
FindAtom({resCount - 1, gNDatas[dataCount].atom2Name,
atomC, &found);
if (found)
FindAtom({resCount, gNDatas[dataCount].atom3Name,
atomH, &found);
}

if (! found)
{
if (print)
fprintf (stdout, "ncs $-4s%3d%ls = ncs not found\n",
gAtoms [gResidues [resCount].begin] .resName,
gAtoms [gResidues[resCount] .begin] .resSegNum,
gAtoms [gResidues [resCount].begin] .insertRes) ;
}
else
{
CalcTheta(atomN, atomC, atomH, theta);

PAS_MF(PAS, alpha, beta, MF);

MF_LF(MF, theta, LF);
if(delta == 0.0)
caleCS = LF[Z]11Z];
else
{
FindAtom({resCount, "CA", cal, &found);
if(found && ((resCount + 1) < gNumRes))
FindAtom(resCount + 1, "CA", ca2, &found);
if (found)
{
Vectorize(cal, ca2, motAvgBond);
Normalize (motAvgBond) ;
MotavgTensor (LF, motAvgBond, delta, sigmaAvyg);
calcCS = sigmaAvgl(2z] (Z];
}
else
caleCs = LF[Z][2];
}

penalty = CalcPenalty(calcCS, obsCS, expError);
csPenalty += penalty;

if({print)

fprintf (stdout, "ncs %-4s%3d%ls = ",
gAtoms [gResidues[resCount] .begin] .resName,

186

gAtoms [gResidues [resCount] .begin] . resSegNum,
gAtoms [gResidues [resCount] .begin] .insertRes);
fprintf (stdout, "%10.4f %10.4f %10.4f",
calcCs,
obs(Cs,
calcCS -~ obsCS);
if(fabs{calcCS - obsCS) <= expError)
fprintf(stdout, * ");
else
fprintf (stdout, "**);
fprintf (stdout, "%10.4f\n", expError);
}

if (resCount == gTrajRes - 1)
gCalcNCS = calceCs;

}

if (print && gNumNData)
fprintf(stdout, "\n");

return(csPenalty);

}

/*

File CalcNHP.c

Calculates the penalty for the NH dipole splitting.
*/

#include "Torc.h"

double CalcNHP(int print)
{
int found,
resCount,
dataCount;
double angle,
calcDip,
obsDip,
expError,
atomN[3],
atomH[3],
atomz{3],
vecNH{3],
vecNzZ{3],
nhPenalty = 0.0,
penalty;

gCalcNH = -1.0;
for (dataCount = 0; dataCount < gNumNHData; ++dataCount)

{

resCount = gNHDatas[dataCount] .resNum - 1;
FindAtom({resCount, gNHDatas[dataCount].atomlName, atomN, &found);
if (found)
FindAtom(resCount, gNHDatas [dataCount].atom2Name, atomH, &found);
if (! found)
if (print)

fprintf(stdout, "nh %-4s%3d%1ls = nh not found\n",
gAtoms [gResidues [resCount]) .begin] .resName,

187

gAtoms [gResidues[resCount] .begin] . resSegNum,
gAtoms [gResidues [resCount] .begin] .insertRes);
}
else
{
obsDip = gNHDatas [dataCount].dip;
expError = gNHDatas|[dataCount} .expError;

atomz[X] = atomN([X];
atomz (Y] = atomN([Y];
atomz[Z2] = atomN[Z] + 1.0;

Vectorize(atomN, atomZ, vecNZ);
Vectorize(atomN, atomH, vecNH);

angle = DotProd(vecNH, vecNZ);

calcDip = 3.0 * DSQR(angle);
calcDip = calcDip - 1.0;
calcDip = gNHDatas(dataCount].nuParallel * fabs(calcDip);

penalty = CalcPenalty(calcDip, obsDip, expError);
nhPenalty += penalty:;

if (print)
{
fprintf(stdout, "nh %-4s%3d%ls = ",
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues[resCount) .begin] .resSegNum,
gAtoms [gResidues[resCount] .begin] . insertRes) ;
fprintf(stdout, "%10.4f %10.4f %10.4f",
calcDip,
obsDip,
calcDip - obsDip);
if(fabs({calcDip - obsDip) <= expError)
fprintf (stdout, " ");
else
fprintf(stdout, "*v);
fprintf (stdout, "%10.4f", expError);
fprintf (stdout, " angle = %5.1f\n", acos(angle) / gdRadPerDeg);
}

if(resCount == gTrajRes - 1)
gCalcNH = calchip;

}

if({print && gNumNHData)
fprintf(stdout, "\n");

return(nhPenalty) ;
}

/*
File CalcNorm.c
Calculates the normal of two vectors.

*/
#include "Torc.h*"
void CalcNorm(double vecl{3],

double vec2{3],
double norm[3])

188

norm[X] = (vecl[Y] * vec2[Z]) - (vec2[Y] * vecl[Z]);
norm[Y) = (vecl[Z] * vec2[X]) - (vec2[Z] * vecl[X]);
noxrm([Z] = (vecl[X] * vec2[Y]) - (vec2([X] * vecl[Y]);

}

/*

File CalcOri.c

Calculates the N-H and C-0 bond orientations relative to Z.
*/

#include "Torc.h"
#include <string.h>

void CalcOri (char bondTypel[]
unsigned long int totalCalc,
int print)

int resCount,
found;
static int firstTime = TRUE;
char atomlType [gdLineLength],
atom2AType [gdLineLength],
atom2BType [gdLineLength],
atom3Type [gdLineLength] ;
double atoml (3],
atom2[3],
atom3([3],
atomz{3],
veclz (3],
vecl2([3],
vecl3[3],
normal [3],
planeangle,
bondangle;

if (strcmp (bondType, "N-H") == 0)

{
sprintf (atomlType, "N");
sprintf (atom2AType, "HN");
sprintf (atom2BType, "H");
sprintf (atom3Type, "CA");

}

if (strcmp (bondType, "C-0*) == 0)

{
sprintf (atomiType, "C"):
sprintf (atom2AType, "0");
sprintf (atom2BType, "0");
sprintf (atom3Type, "CA");

}

if(gOriFlag && !firstTime)
fprintf (gOriFile, "%i\t%s", totalCalc, bondType);

for{resCount = 0; resCount < gNumRes; ++resCount)
{
FindAtom(resCount, atomlType, atoml, &found);
if (found)
{
Findatom(resCount, atom2AType, atom2, &found);
if (! found)

189

FindAtom(resCount, atom2BType, atom2, &found);
}
if (found)
FindAtom(resCount, atom3Type, atom3, &found);

if (found)

{
atomz[X] = atoml [X];
atomz[Y] = atoml [Y];

atomzZ(Z] = atoml([Z] + 1.0;

Vectorize({atoml, atomZ, veclZ);
Vectorize(atoml, atom2, vecl2);
Vectorize (atoml, atom3, vecl3);
CalcNorm(vecl2, vecl3, normal);

planeaAngle = acos(DotProd(normal, veclZ)) / gdRadPerDeg;
bondAngle = acos(DotProd(vecl2, veclZ)) / gdRadPerDeg;

if (strcmp (atomlType, "N") == 0)
planeAngle = planeAngle - 90.0;
if (strcmp (atomlType, "C") == Q)

planeangle = 90.0 - planeAngle;
if (gOriFlag)
{

if (firstTime)

fprintf (gOriFile, "\t%d",
gAtoms [gResidues [resCount] .begin] .resSegNum) ;

else
fprintf (gOriFile, "\t%.1lf", planeAngle);
}
if(print)
fprintf (stdout, "%-4s%3d%ls %s",
gAtoms [gResidues [resCount] .begin] .resName,
gAtoms [gResidues [resCount] .begin] . resSeqgNum,
gAtoms [gResidues [resCount] .begin] .insertRes,
bondType) ;
if (planedngle < -3.0)
fprintf (stdout, " out");
else if(planeAngle > 3.0)
fprintf (stdout, * in"});
else
fprintf (stdout, " parallel");
fprintf(stdout, " %6.1f", planeAngle);
if (bondangle > 93.0)
fprintf (stdout, " down") ;
else if(bondaAngle < 87.0)
fprintf (stdout, " up");
else
fprintf (stdout, * perp"):
fprintf (stdout, “"\n");
}
}
}
if(gOriFlag)

fprintf (gOriFile, "\n");

190

if(firstTime)
firstTime = FALSE;
}

/*

File CalcPenalty.c
Calculates the penalty.
*/

#include "Torc.h"

#undef 1dFLAT
#undef 1dPARABOLIC
/*

#define 1dFLAT

*/

#define 1dPARABOLIC

double CalcPenalty{double calc,
double obs,
double expError)

{
double penalty;
#ifdef 1dFLAT
double errorLimit,
amplitude;

errorlLimit = fabs(calc - obs) - expError;

#endif

/* keep
amplitude
amplitude

*/

#ifdef 1dFLAT

amplitude = 1.0 / DSQR(expError);

penalty = (errorLimit <= 0.0) ? 0.0 :

return(penalty);
#endif

#ifdef 1dPARABOLIC

penalty = 0.5 * DSQR((calc - obs) / expError);

return(penalty);
#endif
}
#undef 1dFLAT
#undef 1dPARABOLIC

/*
File CalcResPT.c

Calculates residues per turn and pitch.

*/
#include "Torc.h"

int CalcResPT{void)

{
typedef struct

{

gTemperature * gdBoltzmann / DSQR{expError});
gKBInitT / DSQR (expError);

0.5 * amplitude * DSQR(errorLimit);

int resNum;
double cal3];
} caAtom;

caAtom
double

*caAtoms;
resPerTurn,
pitch,
LOtRPT =
totPitch
atoml[3],
atom2 [3],
atom3 (3],
vectorl[3],
vector2(3],
avgbelta,
angle;

int resCount,
caCount,
numCA = 0,
numCalc = 0,
found,
linear;

0.0,
= 0.0,

for(resCount = 0; resCount < gNumRes; ++resCount)
{

FindAtom(resCount, "CA", atoml, &found);
if (found)

++numCA;

}

caAtoms = (caAtom *) malloc(numCA * sizeof (caiAtom));
if (caAtoms == (caAtom *) NULL)

{
fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "CalcResPT\n");
fprintf(stderr, "\n");
exit(1l);

}

linear = TRUE;
caCount = 0;
for (resCount = 0; resCount < gNumRes; ++resCount)
{

FindAtom(resCount, "CA", caAtoms[caCount].ca, &found);
if (found)
{

if (caCount > 0)

if(caAtoms([caCount - 1].resNum + 1 != resCount)
linear = FALSE;

caAtoms [caCount] .resNum = resCount;

++caCount;

if(!linear)
break;

}

if (numCA < 3)

{
fprintf (stdout,
fprintf (stdout,
return(0) ;

"\n***Need at least three CA.***\n");
v***] cannot calculate Residues Per Turn.***\n\n");

192

}

if(!linear)

{
fprintf(stdout, "\n***CA must be continuous.***\n");
fprintf(stdout, "***I cannot calculate Residues Per Turn.***\n\n");
return(0);

}

fprintf (stdout, "\n*);

fprintf (stdout, "%33s %15s\n", "DeltaZ", "DeltaZ");
fprintf (stdout, "%6s %9s", "Res #", "CA[Z]"):
fprintf(stdout, " %9s %7s", "Res-Res", "n-(n-1)");
fprintf(stdout, " %7s $7s", "Res-Res"”, "n-(n-2)");
fprintf (stdout, " %7s %5s\n", "Res/Trn", "Pitch");

fprintf (stdout, "%6s %7s", "-——-=—-o L "y
fprintf (stdout, " %9s %7s", “"------- v, Memeeeee "y;
fprintf (stdout, " %7s %7s", "e--—ve- R e ");:

fprintf (stdout, " %7s %5s\n", "--—-—--- L ");

caCount = 1;

resCount = caAtoms[caCount].resNum - 1;

fprintf (stdout, "%-4s%3d%ls %7.2f\n",
gAtoms [gResidues {resCount].begin] .resName,
gAtoms [gResidues [resCount] .begin] .resSegNum,
gAtoms [gResidues [resCount].begin] .insertRes,
caAtoms [caCount - 1l.calZ]);

for(caCount = 1; caCount < numCA - 1; ++caCount)

{

resCount = caAtoms[caCount].resNum;

atoml [X] = caAtoms[caCount - 1].ca[X];
atoml[Y) = caAtoms[caCount - 1].ca(Y];
atoml[Z] = caAtoms[caCount].calZ];
atom2[X) = caAtoms[caCount].ca[X];
atom2 (Y] = caAtoms{caCount].calY];
atom2[2] = caAtoms([caCount].ca(Zz];
atom3 [X] = caAtoms[caCount + 1].calX];
atom3[Y] = caAtoms[caCount + 1].calY];
atom3[Z2] = caAtoms[caCount].ca[Zz];

Vectorize(atom2, atoml, vectorl);
Vectorize(atom2, atom3, vector2);

angle = acos(DotProd(vectorl, vector2));

resPerTurn = (2.0 * gdPi) / (gdPi - fabs(angle));

avgDelta = fabs(caAtoms([caCount + 1].cal[Z] -
caAtoms[caCount - 1].calZ]) / 2.0;

pitch = resPerTurn * avgDelta;

totRPT += resPerTurn;
totPitch += pitch;
++numCalc;

fprintf(stdout, "%-4s%3d%ls %7.2f",
gAtoms [gResidues [resCount] .begin] . resName,
gAtoms [gResidues [resCount] .begin] . resSegNum,
gAtoms [gResidues [resCount] .begin] .insertRes,
caAtoms [caCount].ca(z]);

fprintf (stdout, " %5i-%3i", caCount, caCount + 1);

193

fprintf (stdout, " %6.2f",
caAtoms [caCount] .cal[2] - caAtoms[caCount - 1].cal[Z]);
if(caCount > 1)

{
fprintf(stdout, " %4i-%3i", caCount - 1, caCount + 1);
fprintf(stdout, " %6.2£f",
caAtoms [caCount] .ca[Z] - caAtoms{caCount - 2}.calZ]);
fprintf (stdout, " %6.1f %7.1£f\n", resPerTurn, pitch);
}
else

fprintf (stdout, " %22.1f %7.1f\n", resPerTurn, pitch);
}

caCount = numCA - 1;
fprintf (stdout, "%-4s%3d%ls %7.2f",
gAtoms [gResidues(resCount + 1] .begin].resName,
gAtoms [gResidues[resCount + 1} .begin].resSegNum,
gAtoms [gResidues[resCount + 1] .begin].insertRes,
caAtoms [caCountl.calZ]);
fprintf(stdout, " $5i-%3i", caCount, caCount + 1);
fprintf(stdout, " %6.2f",
caAtoms [caCount].ca{Z] - caAtoms[caCount - 1].cal[Z]);
if(((caCount + 1) % 2) != 0)
{

fprintf(stdout, " %4i-%3i", caCount - 1, caCount + 1);
fprintf(stdout, " %6.2f\n",
caAtoms [caCount].ca[2] - caAtoms{caCount - 2].calZz]);
}
else
fprintf (stdout, "\n");

fprintf (stdout, "Average Residues/Turn: %5.1f\n", totRPT / numCalc};
fprint£f(stdout, "Average Pitch: %5.1f\n", totPitch / numCalc);
fprintf(stdout, "\n"});

free(caAtoms) ;
return(l);

}

/*

File CalcTheta.c

Calculates the theta values needed for rotating the chemical shift tensor
from the molecular frame to the laboratory frame.

*/
#include "Torc.h"

void CalcTheta(double atoml[3],
double atom2[3],
double atom3[3],
double theta(l3))

double vecl2([3],
vecl3 (3],
x[3],
yI3],
z{3],
yprime(3],
sinYGamma,
cosYGamma,
yGamma;

194

Vectorize(atoml, atom2, vecl2);
Vectorize(atoml, atom3, vecl3);
CalcNorm(vecl2, vecl3, y);
Normalize(y);

z[X] = vecl2[X];
z[Y} vecl2(Y];
z[2] vecl2(z];
Normalize(z);

/*
CalcNorm(y, z, X);
Normalize(x);

*/

yGamma = acos(z[Y]/sqrt (DSQR(z[X]) + DSQR(z[Y]))) * (double) SIGN{z[X]);
sinYGamma = sin(yGamma);
cosYGamma = cos (yGamma) ;

yprime[X] = (y[X] * cosYGamma) - (y{Y¥] * sinYGamma);
/*
yprime(Y] = (yv[X] * sinYGamma) + (y[Y] * cosYGamma);
yprime(Z] = y[2];
*/
theta[ONE] acos (yprime[X]) * (double) SIGN(y([Z]);
theta[TWO] acos(z[2]);

theta[THREE]} = yGamma + (90.0 * gdRadPerDeg);
}

/*

File CalcTorAngle.c

Calculates the torsion angle for four atoms.
*/

#include "Torc.h"

double CalcTorangle(double atoml (3],
double atom2 (3],
double atom3[3],
double atom4 [3])

double vec2l([3],
vec23[3],
vec34 (3],
norml23[3],
norm234 3],
crossNorm[3],
angle,
crossAngle;

Vectorize(atom2, atoml, vec2l);
Vectorize(atom2, atom3, vec23);
Vectorize(atom3, atomd, vec34);

CalcNorm(vec23, vec2l, norml23);
CalcNorm(vec23, vec34, norxrm234);
CalcNorm{norml23, norxrm234, crossNorm);

angle = DotProd(norml23, norm234);

if (fabs(angle) > 1.0)
angle = -1.0;

195

angle = acos{angle);

crossAngle = DotProd(vec23, crossNorm);
if(crossangle < 0.0)

return(-angle);
else

return(angle) ;

}

/*

File CalcTorsion.c

Calculates the (phi, psi, omega, x1, x2, x3) torsion angles of a peptide.
This function uses CalcTorAngle to actually calculate individual torsion
angles.

*/

#include "Torc.h"

void CalcTorsion(void)

{

double angle,

atoml([3],

atom2 (3],

atom3[3],

atomd [3];
int residueCount = 0,

found;
fprintf(stdout, " Residue Phi Psi Omega");
fprintf(stdout, " X1 X2 X3 X4\n");
fprint£f(stdout, "------—-m —-;-eos cmmmmee e "):
fprintf(stdout, * -~-~--—--- —-m-ses —meem oo \n");

fprintf(stdout, "%4s%4d%ls %8s",
gAtoms [gResidues [residueCount] .begin] . resName,
gAtoms [gResidues [residueCount] .begin] . resSeqNum,
gAtoms [gResidues [residueCount] .begin] . insertRes,

"__ u);

for(residueCount = 0; residueCount < gNumRes; ++residueCount)
{
if (residueCount + 1 < gNumRes)
(
FindAtom(residueCount, "N", atoml, &found);
if (found)
FindAtom(residueCount, "CA", atom2, &found);
if (found)
FindAtom(residueCount, "C", atom3, &found);
if (found)
FindAtom(residueCount + 1, "N", atomd, &found);
if (found)
{
angle = CalcTorAngle(atoml, atom2, atom3, atom4);
fprintf(stdout, " %8.2f", angle / gdRadPerDeg);
}
else
fprintf (stdout, "%10s", "-~ ");
}
else
fprintf (stdout, "%10s", "-- ");

if (residueCount + 1 < gNumRes)

196

FindAtom{residueCount, "CA", atoml, &found);
if (found)

FindAtom(residueCount, "C", atom2, &found);
if (found)

FindAtom(residueCount + 1, "N", atom3, &found);
if (found)

FindAtom(residueCount + 1, "CA", atom4, &found);
if (found)

{
angle = CalcTorAngle(atoml, atom2, atom3, atomd);
fprintf (stdout, "$1s %8.2f", * *, angle / gdRadPerDeg);
}
else
fprintf(stdout, "%10s", "-- *);
}
else

fprintf(stdout, *"%10s", "-- ");

FindAtom(residueCount, "N", atoml, &found);
if (found)
FindAtom(residueCount, "CA", atom2, &found);
if (found)
FindAtom(residueCount, "CB", atom3, &found);
if (found)
{
FindAtom(residueCount, "CG", atom4, &found);
if (! found)
FindAtom(residueCount, "CGl", atom4, &found);

}
if (found)
{
angle = CalcTorAngle(atoml, atom2, atom3, atomd);
fprintf (stdout, "%1s %8.2f", " ", angle / gdRadPerDeg);
}
else
fprintf (stdout, "%10s", "-- ");

FindAtom(residueCount, "CA", atoml, &found);
if (found)

FindAtom(residueCount, "CB", atom2, &found):
if (found)

{
FindAtom(residueCount, "CG", atom3, &found);
if(!found)
FindAtom({residueCount, "CGl", atom3, &found);
}
if (found)
{
FindAtom(residueCount, "CD*, atomd, &found);
1E(!found)
FindAtom(residueCount, "CD1", atom4, &found);
}
if (found)
{
angle = CalcTorAngle(atoml, atom2, atom3, atomd);
fprintf (stdout, "%1s %8.2f", " ", angle / gdRadPerDeq);
}
else
fprintf(stdout, "%10s", "-- ");

FindAtom{residueCount, "CB", atoml, &found);

197

if (found)

{
FindAtom(residueCount, "CG", atom2, &found);
if(!found)
FindAtom(residueCount, "CGl", atom2, &found);
}
if (found)
{
FindAtom({residueCount, *"CD", atom3, &found);
if(!found)
FindAtom(residueCount, "CD1", atom3, &found);
}
if (found)
{
FindAtom(residueCount, *“NE", atomd4, &found);
if(!found)
FindAtom(residueCount, "NEL", atom4, &found);
}
if (found)
{
angle = CalcTorAngle{atoml, atom2, atom3, atom4);
fprintf(stdout, "%ls %8.2f\n", " ", angle / gdRadPerDeg);
}
else

fprintf (stdout, "%10s\n", "-- ");

if (residueCount + 1 < gNumRes)

{
fprintf (stdout, "%4s%4d%1ls",
gAtoms [gResidues [residueCount + 1] .begin].resName,
gAtoms [gResidues [residueCount + 1] .begin].resSegNum,
gAtoms [gResidues[residueCount + 1) .begin].insertRes);
FindAtom{residueCount, "C", atoml, &found);
if (found)
FindAtom(residueCount + 1, "N, atom2, &found);
if (found)
FindAtom(residueCount + 1, "CA", atom3, &found);
if (found)
FindAtom(residueCount + 1, "C", atom4, &found);
if (found)
{
angle = CalcTorAngle(atoml, atom2, atom3, atomd);
fprintf(stdout, " %8.2f", angle / gdRadPerDeg);
}
else
fprintf(stdout, " %8s", "-- “);
}

}

/*

File CalcTotP.c

Calculates the total penalty of the refined structure.
*/

#include “"Torc.h"

double CalcTotP(int print)
{
static int printNum = 1;
double totPenalty = 0.0,
penaltyNCs,

198

p
p
p
D
D
p
p

enaltyCCs,
enaltyICs,
enaltyNC,
enaltyNH,
enaltyIH,
enaltyDIS,
enaltyCD;

#ifndef NORMTORC

double p
double e
#endif

if (print)
{
fprintf
fprintf
}

penaltyNCS
totPenalty
penaltyCCS
totPenalty
penaltyICS
totPenalty
penaltyNC

totPenalty
penaltyNH

totPenalty
penaltyIH

totPenalty
penaltyDIS
totPenalty
penaltyCD

totPenalty

enaltyE;

torc_(double x{], double y{l, double z{],
double fX[], double £Y[], double £Z[]);

(stdout, "%17s calc obs

(stdout, "%17s-------- —=-————-

= CalcNCSP(print);

= gLambda {NCS] * penaltyNCS;
= CalcCCSP(print);

+= gLambda[CCS] * penaltyCCS;
= CalcICSP(print):;

+= gLambda[ICS] * penaltyICS;
= CalcNCP(print) ;

+= gLambda[NC] * penaltyNC;
= CalcNHP(print) ;

+= gLambda[NH] * penaltyNH;
= CalcIHP(print);

+= glLambda[IH] * penaltyIH;
= CalcDisP(print);

+= glLambda[DIS] * penaltyDIS;
= CalcCDP(print) ;

+= gLambda[CD] * penaltyCD;

#ifndef NORMTORC
/* CHARMM is ssllooww. This is to speed up the dihedral refinement. */

if (gLambda
penalty

else
penalty

gCalcE = p
totPenalty
#endif

gCalcNCSP
gCalcCCsP
gCalcICSP
gCalcNCP
gCalcNHP
gCalcIHP
gCalcDISP
gCalcCDP

[E] == 0.0)
E = 0.0;

calc-obs expError\n"*, "
________________ \n" , "

E = etorc_(gXArray, gYArray, gZArray,
gXForce, gYForce, gzZForce);

enaltyE;
+= (gLambda[E] * penaltyE);

glLambda [NCS] * penaltyNCS;
gLambda [CCS] * penaltyCCs;
gLambda[ICS] * penaltyICS;
gLambda [NC] * penaltyNC;
glLambda [NH] * penaltyNH;
gLambda[IH] * penaltyIH;
gLambda [DIS] * penaltyDIS;
gLambda [CD] * penaltyCD;

#ifndef NORMTORC

gCalcEP
#endif
gCalcTotP

= gLambda[E] * penaltyE;

= totPenalty;

199

")

if (print)
{
fprintf(stdout, ":%d penalty lambda penalty\n",
printNum) ;
fprintf(stdout, ":%d NCS %10.4f %10.4f %10.4f\n",
printNum, penaltyNCS, gLambda[NCS], penaltyNCS * gLambda[NCS1);
fprintf (stdout, ":%d CCS %$10.4f %10.4f %10.4f\n",
printNum, penaltyCCS, gLambda[CCS], penaltyCCS * gLambdal[CCS]);
fprintf (stdout, ":%d ICS %10.4f %10.4f %10.4f\n",
printNum, penaltyICS, gLambdal[ICS], penaltyICS * glLambda[ICS]);
fprintf (stdout, ":%d NC $%10.4f %10.4f %10.4f\n*,
printNum, penaltyNC, glambda[NC], penaltyNC * gLambda(NC]);
fprintf(stdout, ":%d NH %10.4f %10.4f %10.4f\n",
printNum, penaltyNH, gLambda[NH]), penaltyNH * gLambda[NH]);
‘ fprintf(stdout, ":%d IH %10.4f %10.4f %10.4f\n",
printNum, penaltyIH, gLambda[IH]}, penaltyIH * gLambda[IH]);
fprintf (stdout, ":%d DIS %10.4f %10.4f %10.4f\n",
printNum, penaltyDIS, gLambda[DIS], penaltyDIS * gLambda[DIS]);
fprintf (stdout, ":%d CD %10.4f %10.4f %10.4f\n",
printNum, penaltyCD, gLambda[CD], penaltyCD * gLambda([CD]);
#ifndef NORMTORC
fprintf (stdout, ":%d E %$10.4f %10.4f %10.4f\n",
printNum, penaltyE, glambda(E], penaltyE * gLambdalE]);

#endif
fprintf(stdout, ":%d e \n",
printNum) ;
fprintf (stdout, ":%d total %10.4f\n",

printNum, totPenalty);
fprintf (stdout, ":%d\n\n", printNum);
++printNum;

}

return(totPenalty);
}

/*

File CopyCoord.c
Copies a molecule,
*/

#include "Torc.h"

void CopyCoord(atom *atomsIn,
atom *atomsCopy)

{

int atomCount;

for{atomCount = 0; atomCount < gNumAtoms; ++atomCount)
atomsCopy [atomCount] = atomsIn([atomCount];
}

/*

File CopyXYZ.c

Copies the XYZ coordinates of a molecule.
*/

#include "Torc.h"

void CopyXYZ(atom *atomsIn,
atom *atomsCopy)

(
int atomCount ;

for(atomCount = 0; atomCount < gNumAtoms; ++atomCount)

{

}
/*

atomsCopy [atomCount] . cooxds [X]
atomsCopy [atomCount] .coords [Y]
atomsCopy {atomCount] . coords [Z]

File DeclArray.c
Declares the necessary memory for the global arrays.

*/

#include

"Torc.h"

void DeclArray (void)

{

int

count;

atomsIn[atomCount] .coords (X];
atomsIn[atomCount].coords [Y];
atomsIn[atomCount].coords([Z];

gAtomsInitial = (atom *) malloc(gNumAtoms * sizeof (atom));
if {gAtomsInitial == (atom *) NULL)

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
exit(1l);

ll\nll);

'out of memoryi\n');

"DeclArray - Setting up gAtomsInitial\n");
ll\nll);

gAtomsLowest = (atom *) malloc(gNumAtoms * sizeof (atom));
if (gAtomsLowest == (atom *) NULL)

{

}

fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1);

gAtomsLastState =
if (gAtomsLastState

{

}

fprintf(stderr,
fprintf (stderr,
fprintf(stderr,
fprintf(stderr,
exit (1) ;

#ifndef NORMTORC

gXArray =
if (gXArra
{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
exit(l);

ll\nll)’,

"out of memory!\n");

"DeclArray -~ Setting up gAtomsLowest\n");
ll\nll)'.

(atom *) malloc(gNumAtoms * sizeof(atom));

== (atom *) NULL)

Il\nll)’.

"out of memory!\n");

"DeclArray - Setting up gAtomsLastState\n");
ll\nll);

(double *) malloc(2 * gNumAtoms * sizeof (double));
== {double *) NULL)

ll\nll);

"out of memoxy!\n");

"DeclArray - Setting up gXArray\n");
"\n"),'

gYArray = (double *) malloc(2 * gNumAtoms * sizeof (double));

201

if(g¥Array == (double *) NULL)

{
fprintf(stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gYArray\n");
fprintf (stderr, "\n");
exit(l);
}
gzZArray = (double *) malloc(2 * gNumAtoms * sizeof (double));
if(gzArray == (double *) NULL)
{
fprintf (stderx, "\n");
fprintf (stderr, “"out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gZArray\n");
fprintf(stderr, "\n");
exit(1);

}

gXForce = (double *) malloc(2 * gNumAtoms * sizeof (double));
if (gXForce == (double *) NULL)

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1);

" \nu) H

“out of memory!\n");

*DeclArray -~ Setting up gXForce\n'");
" \n") H

gYForce = (double *) malloc(2 * gNumAtoms * sizeof (double));

if (gYForce == (double *) NULL)
{
fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gYForce\n");
fprintf(stderr, "\n");
exit(1);

}

gZForce = (double *) malloc(2 * gNumAtoms * sizeof (double)):;
if (gZForce == (double *) NULL) '

{
fprintf(stderr, "\n");
fprintf (stderr, "out of memory!\n');
fprintf (stderr, "DeclArray - Setting up gZForce\n");
fprintf(stderr, "\n");
exit(1l);
}
gXForceQldState = (double *) malloc(2 * gNumAtoms * sizeof (double));
if (gXForceOldState == (double *) NULL)
{
fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gXForceOldState\n");
fprintf(stderr, "\n");
exit(l);
}
gYForceOldState = (double *) malloc(2 * gNumAtoms * sizeof (double));
if (gYForceOldState == (double *) NULL)
{

fprintf (stderr, "\n");

fprintf (stderr, "out of memory!\n");

fprintf (stderr, “DeclArray - Setting up gYForceOldState\n");
fprintf (stderr, “\n");

exit(1l);
}
gZForceOldState = (double *) malloc(2 * gNumAtoms * sizeof (double));
if (gZForceOldState == (double *) NULL)
{

fprintf(stderr, "\n");
fprintf (stderr, *out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gZForceOldState\n");
fprintf (stderr, "\n");
exit(1);
}

gNumMoveCompAtt = {(int *) malloc{gNumRes * sizeof (int));
if (gNumMoveCompAtt == {int *) NULL)

{
fprintf(stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gNumMoveCompAtt\n");
fprintf (stderr, “"\n");
exit(1l);
}
gNumMoveCompAcc = (int *) malloc(gNumRes * sizeof(int));
if (gNumMoveCompAcc == (int *) NULL)
{

fprintf (stderr, "\n");

fprintf (stderr, "out of memory!\n");

fprintf (stderr, "DeclArray - Setting up gNumMoveCompAcc\n'};
fprintf (stderr, "\n"); '

exit(1l);
}
gNumMoveTunnAtt = (int *) malloc(gNumRes * sizeof (int));
if (gNumMoveTunnAtt == (int *) NULL)
{

fprintf (stderr, "\n");

fprintf (stderr, "out of memory!\n");

fprintf (stderr, "DeclArray - Setting up gNumMoveTunnAtt\n");
fprintf (stderr, *\n");

exit(1l);

}

gNumMoveTunnAcc = (int *) malloc(gNumRes * sizeof(int));
if {(gNurMoveTunnAcc == (int *) NULL)
{
fprintf{stderr, *\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gNumMoveTunnAcc\n');
fprintf(stderr, "\n");

exit(l);
}
gNumMoveTorsAtt = (int *) malloc(gNumRes * sizeof(int));
if (gNumMoveTorsAtt == (int *) NULL)
{

fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n"});

203

fprintf (stderr, "DeclArray - Setting up gNumMoveTorsAtt\n");
fprintf(stderr, “\n");
exit(l);

}

gNumMoveTorsAcc = (int *) malloc (gNumRes * sizeof(int));
if (gNumMoveTorsAcc == (int *) NULL)
{
fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "DeclArray - Setting up gNumMoveTorsAcc\n");
fprintf(stderr, "\n");
exit(l);
}

for(count = 0; count < gNumRes; ++count)

{
gNumMoveCompAtt [count]
gNumMoveCompacc [count]
gNumMoveTunnAtt [count]
gNumMoveTunnAcc [count]
gNumMoveTorsAtt [count]
gNumMoveTorsAcc [count]

QOO0 OO

}
#endif

}

/*

File DoRotation.c

Rotates an atom about a defined origin.

*/

#include "Torc.h"

void DoRotation{double rotMat[3][3],
double atomToRotate(3],
double origin([3])

double xx,

XY,
Xz,
Yy,
yyl
Yz;
xx = (rotMat[X][X] - 1.0) * origin(X])
+ rotMat [X] {Y] * origin(Y]
+ rotMat[X]{Zz] * originlz);
Xy = rotMat[Y] [(X] * origin([X]
+ (rotMat[Y]{Y] - 1.0) * originY}
+ rotMat[Y] (2] * originiz);
xz = rotMat[Z] [X] * origin([X]
+ rotMat[Z] [Y] * originl(Y]
+ (rotMat[z][2] - 1.0) * origin[Z];
vx = rotMat [X] [X] * atomToRotate [X]
+ rotMat [X] [Y] * atomToRotate(Y]
+ rotMat [X] [2] * atomToRotate(Z];
yy = rotMat[Y] [X] * atomToRotate[X]
+ rotMat [Y] [Y] * atomToRotate[Y]
+ rotMat [Y] [2] * atomToRotatel[Z];
yz = rotMat[Z] [X] * atomToRotate[X]

+ rotMat{Z] {Y] * atomToRotate(Y]
+ rotMat (2] [2] * atomToRotatel[Z];

atomToRotate[X] = yx - xx;
atomToRotate([Y] = yy - xy;
atomToRotate([2] = yz - xz;

}

/*

File DotProd.c

Calculates the dot product between two vectors.
*/

#include "Torc.h"
double DotProd{double vecl[3],

double vec2[3])

{
double comp,

magl,

magz2,

result;
comp (vecl[X] * vec2(X]) + (vecll[Y] * vec2[Y]) + (vecl[Z] * vec2(Zz]);
magl sqrt (DSQR(vecl[X]1) + DSQR(vecl(Y])} + DSQR{vecl[Z]));

mag2 ; sqrt (DSQR(vec2 [X]) + DSQR(vec2([Y]) + DSQR{vec2(z])};
t = comp / (magl * mag2);

return(result);
}

/*

File EulerMatrix.c

Calculates a rotation matrix from q.
*/

#include "Torc.h'
void EulerMatrix(double ql[4],

double rotMatrix[3][3])

{
double q0q0,

qlql,

q2q2,

a3q3;
q0g0 = DSQR(q(C]);
glgl = DSQR(qll]);
a2g2 = DSQR(qf2]);
Qa3q3 = DSQR(q{3]};

rotMatrix[X] [X]
rotMatrix (Y] [X]
rotMatrix[2Z] [X]

q0q0 + glgl - g292 - Q34g3;
2.0 * (qll] * ql[2] - g[0] * g[3]);
2.0 * (all] * ql3] + q[0] * gl2]);

rotMatrix[X] [Y]
rotMatrix[Y] [Y]
rotMatrix{z] [Y]

2.0 * (gl2] * ql[1] + q[0]1 * gq[3]);
q0q0 - qlal + q2q92 - q343;
2.0 * (ql2] * ql3] - ql[0] * qf1]);

rotMatrix([X] [Z]
rotMatrix[Y] [Z])
rotMatrix[2]{Z)

2.0 * (al3] * ql[l1] - q[0] * g[2]);
2.0 * (q[3] * q[2] + ql0] * qll1]);
q0q0 - glal - 9292 + a3a3;

205

}

/*

File FindAtom.c

Finds atomic coordinates within a residue.
*/

#include "Torc.h*
#include <string.h>

void FindAtom(int residueNumber,
char atomToFind[],
double coords{3],
int *found)
int atomCount ;

if((residueNumber + 1) > gNumRes)

{
fprintf (stderr, "\n");
fprintf (stderr, "***Operator Erroxr***\n");
fprintf(stderr, "residueNumber %d > %d residues\n",
residueNumber + 1,
gNumRes) ;
fprintf (stderr, "FindAtom\n");
fprintf(stderr, "\n");
exit(l);
}
if (residueNumber < 0)
{

fprintf(stderr, “\n"):
fprintf(stderr, "***Qperator Error***\n");
fprintf (stderr, "residueNumber %d < 0\n", residueNumber);
fprintf (stderr, "FindAtom\n"});
fprintf(stderr, "\n");
exit(1l);
}

atomCount = gResidues|[residueNumber] .begin;

while((strcmp (gAtoms {atomCount] .atomName, atomToFind) != 0) &&
(atomCount < gResidues[residueNumber].end))
++atomCount;
if (strcmp (gAtoms [atomCount] . atomName, atomToFind) != 0)
*found = FALSE;
else
{
coords [X] = gAtoms[atomCount].coords(X];
coords [Y] = gAtoms[atomCount].coords[Y];
coords[Z] = gAtoms [atomCount].coords[Z];
*found = TRUE;
}
}
/*

File GaussRand.c
Generate a gaussian random number.

This function generates a Gaussian random deviate of 0.0 mean and standard
deviation width. The algorithm is based on Box and Muller and is found in
Numerical Recipes in C, 2nd ed., p 289-290.

*/

#include “Torc.h"

double GaussRand(double width)

{

}
/*

static int gotExtraDev = FALSE;
static double extraDev;
double randoml,

random2,

rsq,

fac;

if (!gotExtraDev)
{

do

{
randoml = 2.0 * ((double) random() / gMaxRand) - 1.0;
random2 = 2.0 * ((double) random(}) / gMaxRand) - 1.0;
rsq = DSQR(randoml) + DSQR(random2);

}
while(rsq >= 1.0 || rsq == 0.0);

fac = sqrt(-2.0 * log(rsq) / rsq);
extraDev = width * randoml * fac;
gotExtraDev = TRUE;

return(width * random2 * fac);

}
else

{
gotExtraDev = FALSE;
return (extraDev) ;

File GetMag.c

Returns a random nonzero magnitude between and including two limits.

*/

#include "Toxc.h"

#define 1ldLowLimit 0.01

double GetMag(double low,

{

double high)

double mag,
range,
TYPRM,
small,
lowest;

small = fabs(high);
if (fabs(low) < small)

small = fabs(low);
lowest = small * ldLowLimit;

range = high - low;
rpRM = range / gMaxRand;
do
{
mag = low + (rpRM * random());

207

}

while(fabs(mag) < lowest);
/*

while(mag == 0.0);
*/

return(mag) ;
}
#undef ldLowLimit

/*

File MF_LF.c

Rotates the chemical shift tensor from the molecular frame to the laboratory
frame.

*/

#include "Torc.h"

void MF_LF (double sigmaMF(3] (31,
double thetal3],
double sigmaLF[3][3])

double rtl([3](3],
rtlt[3][3],
rt2[3]([3],
rt2t (3] (3],
rt3[31(3],
rt3t[31[3),
resultl[3][3],
result2[3][3],
result3 (3] [3],
result4 (3] [3],
result5(3]{31;

rtl[X] [X] = cos(theta[ONE]);
rtl[X] [Y] = sin(theta[ONE]);
rtl1{X][2] = 0.0;
rtl1[Y] [X] = -sin(theta[ONE]);
rtl[Y] [Y] = cos(theta[ONE]);
rt1[Y)[2Z] = 0.0;
rtl[Z](X] = 0.0;
rtl (2] (Y] = 0.0;
rtl{z] (2] = 1.0;

Transpose(rtl, rtit);

rt2[{X] [X] = cos(theta[TWO]);
rt2{X] (Y] = 0.0;
rt2([X)[2] = -sin(theta[TWO]);
rt2[Y] [X] = 0.0;
re2[Y][Y] = 1.0;
rt2[Y][2] = 0.0;
rt2[2] [X] = sin(theta[TWO]);
rt2[Z][Y] = 0.0;
rt2[2] [2] = cos(theta[TWO]);

Transpose({rt2, rt2t);

rt3[X] [X] = cos(theta[THREE]};
rt3[X] (Y] = sin(theta[THREE]);
re3[X]1[2] = 0.0;

rt3[Y] [X] = -sin(theta[THREE]);

rt3{Y][Y] = cos(theta[THREE]);
rt3(yl(z] = 0.0;
rt3[(z] [X] = 0.0;
rt3[z2]1[Y] = 0.0;
rt3[z][2] = 1.0;

Transpose({rt3, rt3t);

MatMult (rt3, rt2, resultl);
MatMult (resultl, rtl, result2);
MatMult (result2, sigmaMF, result3);
MatMult (result3, rtlt, resultd);
MatMult (resultd4, rt2t, result5);
MatMult (result5, rt3t, sigmaLF);

}

/*

File MakeXYZArray.c

Transfers the atomic coordinates into x, y and z arrays for use in charmm.
*/

#include "Torc.h"

void MakeXYZArray(atom *atomsIn,

double *x,
double *y,
double *z)
{
int atomCount;
for(atomCount = 0; atomCount < gNumAtoms; ++atomCount)
{
x[atomCount] = atomsIn[atomCount].coords [X];
y[atomCount] = atomsIn[atomCount].coords[Y];
z [atomCount] = atomsIn[atomCount].coords(Z];
}
}
/*

File MatMult.c
Multiplies two 3x3 matrices.
*/

#include "Torc.h"
void MatMult (double matrix1{3] (3],

double matrix2(3][3],
double result([3][3])

{
int row,
col;
for(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
result[row] [col] = matrixl[row] {X] * matrix2[X][col]
+ matrixl [row] [Y] * matrix2[Y] [col}
+ matrixl(row] (2] * matrix2([Z] [coll;
}
/*

File Metropolis.c
Determines whether a given change in penalty is acceptable.

209

*/
#include "Torc.h"

int Metropolis(double dPenalty)
{
double kbt,
randomNum;

kbt = gTemperature * gdBoltzmann;
randomNum = (double) random() / gMaxRand;

if((dPenalty <= 0.0) || {(randomNum < exp(-dPenalty / kbt)})
return (TRUE) ;
else
return(FALSE) ;
}

/*

File MotavgTensor.c

Motionally averages the chemical shift tensor.
*/

#include "Torc.h"
#define ldMotAvgRes 100.0

void MotavgTensor(double tensorIn(3] (3],
double motAvgBond([3],
double delta,
double tensorOut[3][3])

double theta,
templ,
temp2,
motRes,
prob,
probSum = 0.0,
result 3] (3],
ql4],
rotMat [3] (3],
rotMatT({3] (3],
tensorsSum([3] (3],
tensorOutProb[3] [3],
tensorOutTotal (3} [3];
int row,
col;

for{row = X; row <= Z; ++row)
for(col = X; col <= 2; ++col)
tensorSum[row] [col] = 0.0;
motRes = 4.0 * delta / ldMotAvgRes;

for(theta = (-2.0 * delta); theta <= (2.0 * delta); theta += motRes)
{

g[0] = cos(theta * 0.5);

gl[1l) = motAvgBond{X] * sin(theta * 0.5);

g[2] = motAvgBond(Y] * sin(theta * 0.5);

ql[3] = motAvgBond[Z] * sin(theta * 0.5);

EulerMatrix(q, rotMat);
Transpose (rotMat, rotMatT);
MatMult (rotMat, tensorln, result);

210

)

MatMult (result, rotMatT, tensorOut);

templ
temp2

DSQR (theta) ;
1.4427 * DSQR(delta);

prob = exp(-templ / temp2);
probSum += prob;

for(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
tensorOutProb(row] [col] = prob * tensorOut [row] [col];
for{(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
tensorOutTotal [row] [col] = tensorSum[row] [col]

+ tensorOutProb[row] [coll;

for(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
tensorSum{row] [col] = tensorOQutTotal [row] [col];

}

for{row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
tensorOut [row] {col] = tensorSum[row] [col] / probSum;

#undef ldMotAvgRes

/*

File MoveAtoms.c
Move all of the atoms.

kbT in [kcal/mol]

kb
*/

#include "Torc.h"

kB*T*A/4.18/1000 = 1.38E-23*300*6.02E23/4180.
0.5962393 kcal/mol at room temperature (300K)
1.9874643E-03 in kcal/mol/K

void MoveAtoms (atom *atomsIn,
double diffusion)

{

/*

*/
/*

int atomCount;

double atomMove[3],
translation(3],
width,

kbt,

moveFactor;

width = 2.0 * diffusion;
kbt = gTemperature * gdBoltzmann;
moveFactor = diffusion / kbt;

Apply a small global translation to aid in dimerization. This is cheating.

*/

/*

translation[X]
translation[Y]
translation[Z]

(2.0 * ((double) random{) / gMaxRand) - 1.0) * diffusion;
(2.0 * ((double) random() / gMaxRand) -~ 1.0) * diffusion;
(2.0 * ((double) random() / gMaxRand) - 1.0) * diffusion;

for (atomCount = 0; atomCount < gNumAtoms; ++atomCount)

{

Make moves based on the atomic force vectors and diffusion parameter.

211

*/

/*
atomMove [X] =
atomMove (Y] =
atomMove[Z] =

*/

/*

Make moves based on

(moveFactor * gXForcel[atomCount]);
(moveFactor * gYForce[atomCount]);
(moveFactor * gZForcelatomCount]);

the atomic force vectors, diffusion parameter, and a

gaussian random deviation.

*/

/*
atomMove [X] =
atomMove[Y] =
atomMove[Z] =

*/

/*

Make moves based on

*/

/*
atomMove[X] =
atomMovel[Y] =
atomMove[Z] =

*/

/*

Make moves based on

*/

/*
atomMove(X] =
atomMovelY) =
atomMove([Z] =

*/

/*

Make moves based on
*/
atomMove[X]
atomMove[Y]
atomMove[Z] =

(moveFactor * gXForcelatomCount]) + GaussRand(width);
(moveFactor * gYForce[atomCount])} + GaussRand(width);
(moveFactor * gZForce[atomCount]) + GaussRand(width);

the move factor and a gaussian random deviation.

moveFactor + GaussRand{width);
moveFactor + GaussRand{width);
moveFactor + GaussRand(width);

the diffusion parameter and a gaussian random deviation.

GaussRand(diffusion) ;
GaussRand(diffusion);
GaussRand({diffusion);

the diffusion parameter and a random deviation.

(2.0 * ((double) random() / gMaxRand) - 1.0) * diffusion;
(2.0 * ((double) random() / gMaxRand) - 1.0) * diffusion;
(2.0 * ((double) random() / gMaxRand) - 1.0) * diffusion;

atomsIn{atomCount].cooxrds [X] += (atomMove[X] + translation(X]);
atomsInlatomCount] .coords|[Y] += (atomMove([Y] + translation(Y]);
atomsIn[atomCount].coords([Z] += (atomMove[Z] + translation([Z]);

}
/*

File MoveCompensate.

c

Performs a compensating (peptide plane) move.

*/

#include “Torc.h"

int MoveCompensate(int *resNum)

{

int limitLineNum,
rotatevalue;

double mag;

do

212

limitLineNum = (int)
(gNumLimits * random() / (gMaxRand + 1.0));
}
while(strcmp (glimits{limitLineNum] .bondName, "phi")} != 0 &&
stremp (glimits [limitLineNum] .bondName, "psi") != 0);

mag = GetMag(gLimits[limitLineNum].low,
gLimits{limitLineNum].high) * gdRadPerDeg;

rotateValue = RotateAtoms (gAtoms,
gLimits[limitLineNum] .resNum,
gLimits[limitLineNum] .bondName,
mag) ;

if (rotatevalue == 0)

return(0);

rotatevalue = 0;
if (strcmp(gLimits[limitLineNum) .bondName, "phi") == 0)
rotateValue = RotateAtoms(gAtoms,
glimits[limitLineNum)] .resNum - 1,
upsin ,
-mag) ;
if (stremp(glimits[limitLineNum] .bondName, ‘psi") == 0)
rotateValue = RotateAtoms(gAtoms,
gLimits[limitLineNum] .resNum + 1,
"phi",
-mag) ;
if (rotatevalue == 0)
{
RotateAtoms (gAtoms,
gLimits [limitLineNum)] .resNum,
glLimits [limitLineNum) .bondName,
-mag) ;
return{Q) ;
}

*resNum = gLimits{limitLineNum] .resNum;

return(l);

}

/*

File MoveTunnel.c

Performs a tunnel (peptide plane) move based on the magnitude of the
carbonyl orientation with respect to the channel axis.

*/

#include "Torc.h"

#define JdNoPrint 0
#define ldYesPrint 1

int MoveTunnel (int *resNum)
{
int limitLineNum,
rotatevalue,
found;
double atoml (3],
atom2 [3],
atom3 [3],
atomZ [31],
veclZ[3],

213

vecl2{3],
vecl3([3],
normal (3],
mag,
planeAngle,
bondangle;

do
{
limitLineNum = (int)
(gNumLimits * random() / (gMaxRand + 1.0));
}
while(stremp(gLimits[limitLineNum] .bondName, *phi") != 0 &&
stremp (gLimits [1imitLineNum] .bondName, "psi") != 0);

FindAtom(gLimits{limitLineNum].resNum - 1, "C*, atoml, &found);
if (found)

FindAtom(gLimits[limitLineNum].resNum - 1, "O", atom2, &found);
if (found)

FindAtom(gLimits[limitLineNum].xesNum - 1, "CA", atom3, &found);

1f (! found)
return(0}) ;

atoml (X];

atomz[Y] atoml [Y];

atomZ[Z] atoml[Z] + 1.0;
Vectorize(atoml, atomz, veclZ);
Vectorize(atoml, atom2, vecl2);
Vectorize(atoml, atom3, vecl3);
CalcNorm(vecl2, vecl3, normal);

atomZ [X]}

planeAngle = 90.0 - acos(DotProd(normal, veclZ)) / gdRadPerDeg;
bondAngle = acos(DotProd(vecl2, veclZ)) / gdRadPerDeg;

mag = 2.0 * gdRadPerDeg * planeAngle;
if (bondangle > 90.0)
mag = -mag;

rotateValue = RotateAtoms(gAtoms,
gLimits[limitLineNum] .resNum,
"psi”,
mag) ;
if (rotatevalue == 0)
return(0) ;
rotateValue = RotateAtoms(gAtoms,
gLimits[limitLineNum].resNum + 1,
"phi”,
-mag) ;
if (rotatevalue == 0)
{
RotateAtoms (gAtoms,
gLimits[limitLineNum] .resNum,
llpsin ,
-mag) ;
return(0) ;
}

*resNum = gLimits{limitLineNum) .resNum;

return(l);

214

/*

File Normalize.c
Normalizes a vector.
*/

#include "Torc.h"

void Normalize(double vector[3])

{
double length;
length = sqrt (DSQR(vector([X}) + DSQR(vector([Y]) + DSQR(vectorfzl));
if(length != 0.0)
{
vector([X] = vector[X] / length;
vector (Y] = vector(Y] / length;
vector[Z] = vector[Z] / length;
}
else
{
fprintf(stderr, "\n");
fprintf (stderr, "length == 0! No normalization!\n");
fprintf (stderr, "Normalize\n");
fprintf(stdexr, "\n");
exit(l);
}
}
/*

File OutputPDB.c
Outputs the coordinates to disk.
*/

#include "Torc.h"
#include <string.h>
#include <time.h>
#include <sys/times.h>

void OutputPDB(char *fileName,
atom *outAtoms)

{

int atomCount,

digit;

struct tm *tmPointer;

time_t localTime;

FILE *outputFile;

if ((outputFile = fopen(fileName, “"w")) == NULL)

{
fprintf{stderxr, "\n");
fprintf (stderr, "File '$s' cannot be opened\n”, fileName);
fprintf(stderr, "Cannot save coordinates\n");
fprintf{stderr, "\n");
exit{l);

}

fprintf{outputFile, "REMARK 1 Structure refined with:\n");
fprintf(outputFile, "REMARK 1 %s\n", gdVersion);

localTime = time('\0');

tmPointer = localtime(&localTime);

fprintf(outputFile, "REMARK 1 %s", asctime(tmPointer));

215

fprintf (outputFile, "REMARK 2 Randal R. Ketchem\n");
fprintf (outputFile, "REMARK 2 Institute of Molecular Biophysics");:

fprintf (outputFile, * 904.644.1309 (voice)\n");
fprintf(outputFile, "REMARK 2 Florida State University");
fprintf (outputFile, " 904.644.1366 (FAX)\n");
fprintf (outputFile, "REMARK 2 Tallahassee, FL 32306-3015");
fprintf (outputFile, " rrk@magnet.fsu.edu (email)\n");

for(atomCount = 0; atomCount < gNumAtoms; ++atomCount)
{

fprintf (outputFile, "“%-6s", outAtoms [atomCount] .header) ;

fprintf (outputFile, "%54", outAtoms [atomCount] .atomSegNum) ;
#ifdef NORMTORC

digit = outAtoms{atomCount].atomName[0] - '0';

if ((digit <= 9) && (digit >= 0))

#telse
digit = strlen(outAtoms [atomCount].atomName) ;

#endif
fprintf (outputFile, " %-4s", outAtoms[atomCount].atomName);
else
fprintf (outputFile, " %-3s", outAtoms[atomCount].atomName);
fprintf (outputFile, "%ls", outAtoms [atomCount] .altLocInd) ;
fprintf (outputFile, "%-4s", outAtoms [atomCount] .resName) ;
fprintf (outputFile, "%1s", outAtoms [atomCount] .chainXdent) ;
fprintf (outputFile, "$%44*, outAtoms [atomCount] .resSegNum) ;
fprintf (outputFile, "%ls", outAtoms [atomCount] .insertRes) ;
fprintf (outputFile, " %8.3f", outAtoms[atomCount].coords[X]);
fprintf (outputFile, "$%8.3f", outAtoms [atomCount] .coords (Y]) ;
fprintf(outputFile, "%8.3f", outAtoms (atomCount] .coords [Z]) ;
fprintf(outputFile, "%6.2f", outAtoms [atomCount] .occupancy) ;
fprintf(outputFile, "%6.2f", outAtoms [atomCount] .tempFactor) ;
if (outAtoms[atomCount] . footnoteNum == -1)
fprintf (outputFile, " %3s", * ");
else
fprintf (outputFile, " %34", outAtoms [atomCount] . footnoteNum) ;
#ifndef NORMTORC
fprintf (outputFile, " MONO");
#endif

fprintf(outputFile, "\n");
}
fprintf (outputFile, “TER\n");
fprintf (outputFile, "END\n");

fclose(outputFile);
}

/*
File PAS MF.c
Rotates the chemical shift tensor from the principal axis system to the
molecular frame.
*/
#include “Torc.h"
void PAS_MF (double sigmaPAS(3](3],
double alpha,
double beta,
double sigmaMF {3][3])

double rad[3][3],

216

radt (3] [3],
rbd[31[3],
rbdt [3] (3],
resultl(3][3],
result2(3) [3],
result3([3][3];

}

rad[X] [X] = cos{alpha);
rad[X] [Y] = sin(alpha);
rad[X][2) = 0.0;

rad[Y] [X] = -sin(alpha);
rad(Y] [Y] = cos(alpha);
rad[Y]){z] = 0.0;

rad[z] [X] = 0.0;
rad[z] (Y] = 0.0;

rad[z] [Z] = 1.0;

Transpose(rad, radt);

rbd[X] [X] = cos(beta);
rbd([X]) [¥Y] = 0.0;
rbd[X] [2] = sin(beta);
rbd (Y] [X] = 0.0;
rbd (Y] [¥] = 1.0;
rbd[Y][Z] = 0.0;
rbd(z] {X] = -sin(beta);
rbd[z] [¥] = 0.0;
rbd[Z]) [Z] = cos(beta);

Transpose(rbd, rbdt);

MatMult (rbd, rad, resultl);

MatMult (resultl, sigmaPAS, result2);
MatMult (result2, radt, result3);
MatMult (result3, rbdt, sigmaMF);

/*

File PrintHelp.c

Prints help for running TORC.
*/

#include "Torc.h"

void PrintHelp(void)

{

fprintf(stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf {stdout,
fprintf(stdout,
fprintf(stdout,
fprintf (stdout,
fprintf(stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf(stdout,
fprintf(stdout,
fprintf(stdout,
fprintf (stdout,

"\n");

"This program will attempt to modify a peptide "):
"structure in order to\n");

"minimize the deviation between the calculated ");
*and experimental\n®);

"constraints.\n");

"\n");

“The penalty is calculated as:\n");

"0.5 * ({(calc - obs) / expError)”2\n");

"The summed penalty for each constraint type ");
"is then multiplied by a\n");

"weighting factor (normally 1).\n");

"\n"};

*The constraints are calculated from the “);
"coordinates and used to calculate\n");

"the penalty between the calculated constraints "};

217

fprintf(stdout, "and the experimental\n");

fprintf(stdout, "constraints. The program attempts to minimize ");
fprintf(stdout, "the total penalty by\n");

fprintf (stdout, *introducing random conformational changes, ");
fprintf (stdout, "accepting changes based on\n");

fprintf(stdout, "simulated annealing.\n");

fprintf(stdout, "\n");

fprintf(stdout, "To use this program you must supply several ");
fprintf(stdout, *input files. Create an empty\n");
fprintf(stdout, “directory and run the program using that *);
fprintf(stdout, “"directory name. The program will\n");

fprintf (stdout, "let you know each file it needs and the format ");
fprintf (stdout, “of each file.\n");

fprintf(stdout, "\n"});

fprintf(stdout, "The final coordinates are saved as "};

fprintf (stdout, "dir/coord.out.pdb.\n");

fprintf (stdout, "\n");

fprintf (stdout, "Randal R. Ketchem\n");

fprintf (stdout, "Institute of Molecular Biophysics ");

fprintf (stdout, "904.644.1309 (voice)\n");

fprintf (stdout, “"Florida State University "y;

fprintf (stdout, "904.644.1366 (FAX)\n");

fprintf(stdout, "Tallahassee, FL 32306-3015 ")

fprintf (stdout, "rrk€magnet.fsu.edu (email)\n");

fprintf (stdout, "\n"};

exit(1);
}

/*

File ReadCDData.c

Reads the CD quadrupole splitting data file.
*/

#include "Torc.h"
#include <string.h>

int ReadCDData (char fileName[])
{
FILE *cdFile;
char aline[gdLineLength],
header [gdLineLength];
int count = 0;

if({cdFile = fopen(fileName, "r")) == NULL)

{
fprintf(stdout, "\n");
fprintf (stdout, "File '%s' not found\n", fileName);
fprintf (stdout, "The format of the file should be:\n");
fprintf (stdout, "resNum cName dName quad gcc expError\n");
fprintf (stdout, "x X X X.X %X X.xX\n");
fprintf (stdout, "x X X X.X X.X X.X\n"});
fprintf (stdout, "etc.\n");
fprintf (stdout, "({include the header line)\n");
fprintf(stdout, "\n");
return(0) ;

}

gNumCDhbata = 0;
while(fgets{aline, gdLineLength, cdFile) != NULL)

{
sscanf (aline, "%s", &header);

218

if ((header[0]

++gNumCDbata;

rewind(cdFile);

t= '#') && (strcmp(header,

"resNum") != 0})

gCDhDatas = (cdData *) malloc(gNumCDData * sizeof(cdData));
if (gCDhDatas == (cdData *) NULL)
{

fprintf(stderr, "\n");

fprintf (stderr, "out of memory!\n");

fprintf (stderr, “"ReadCDData\n");

fprintf(stderr, “\n");

exit(l);

}

while(fgets(aLine, gdLineLength, cdFile) != NULL)
{
sscanf (aLine, "%s“, &header):
if({(header[0] !'= '#') && (strcmp(header, "resNum") != 0))
{
sscanf (aLine, "%d %s %s %$1f %$1f %1f",

&gCDDatas [count] . resNum,
&gCDDatas [count] .atomlName,
&gCDDatas [count] .atom2Name,
&gCDDatas [count] .quad,
&gCDDatas [count] .qgcc,
&gCDDatas [count] .expError) ;

if (gCDhDatas [count]

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
exit(l);

if (gCDDatas [count]

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

.resNum <= 0)

" \nll) ,.

nx**Operator Error***\n");

"resNum %d <= 0\n", gCDbatas([count].resNum);
"ReadCDData\n");

Il\nll) ’.

.resNum > gNumRes)

"\n") ;
"***Operator Exror***\n");
'resNum %d > %d residues\n",

gCbhbatas [count] . resNum,

gNumRes) ;
fprintf (stderr,
fprintf (stderr,
exit(1);

}
if {gCDhbhatas [count]

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(l);

++count;

*ReadCDData\n");
n \nll) I.

.expError == 0.0)

"\n"};

v***Operator Error***\n");

"Nobody is perfect.\n");

"expError cannot be zero.\n");

"(unless you want an infinite penalty)\n");
"ReadCDData\n");

“\n"};

219

}

/*

}

fclose(cdFile);
return(l);

File ReadCData.c
Reads the carbon chemical shift data file.

*/

#include "Torc.h*
#include <string.h>

int ReadCData(char fileName[])

{

FILE *cFile;
char aLine{gdLinelength],
header [gdLineLength] ;
int count = 0,
row,
col;
if((cFile = fopen(fileName, "r")) == NULL)
{
fprintf (stdout, "\n");
fprintf (stdout, "File '%s' not found\n", fileName);
fprintf (stdout, "The format of the file should be:\n");
fprintf (stdout, "resNum cName nName oName PASx PASy PASz");
fprintf (stdout, " alpha(deg) beta(deg) obsCS delta expError\n");
fprintf (stdout, "x s s s X.X X.X X.X");
fprintf (stdout, " x.x X.X X.X X.X x.x\n"};
fprintf (stdout, "etc.\n");
fprintf (stdout, "{include the header line)\n");
fprintf (stdout, "\n");
return(Q) ;
}
gNumCData = 0;
while(fgets(alLine, gdLineLength, cFile) != NULL)

{

}

sscanf (aline,
if ((headexr[0]
++gNumCData;

rewind{cFile);

gChatas =

if(
{

}

while(fgets(aline, gdLineLength, cFile)

{

gChatas ==

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

sscanf (aline,
if ((header[Q]
{

ll%sil .
= '#') && (strcmp(header,

n %S L ,
= '#') && (strcmp(header,

&header) ;

"resNum") != 0))

(csData *) malloc(gNumCData * sizeof (csData));
(csData *) NULL)

" \nl!) ;

"out of memory!\n");
"ReadCData\n");

" \nll) I.

!= NULL)

&header) ;

"resNum") != 0))

220

/*

for(row = X; row <= 2Z; ++row)
for(col = X; col <= Z; ++col)
gCDhatas[count] .PAS[row] [col] = 0.0;

sscanf(aline, "%d %s %s %s %1f %1f %1f %1f %1f %1f %1f $1f",

&gCDatas [count] . resNum,
&gCDhatas [count] . atomlName,
&gCDatas [count] . atom2Name,
&gCbhatas [count] . atom3Name,
&gCDhatas [count] . PAS[X] (X],
&gCDatas [count] .PAS[Y] [Y],
&gCDatas [count] .PAS[Z] (2],
&gCDhatas{count] .alpha,
&gCDatas (count] .beta,
&gChatas[count] .obsCS,
&gChatas [count] .delta,
&gCDhatas [count] . expError) ;
gChatas [count] .alpha *= gdRadPerDeg;
gChatas [count] .beta *= gdRadPexrDeg;
gCDhatas [count] .delta *= gdRadPerDeg;

if (gChatas[count].resNum <= 0)

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

" \nll) l.

"*¥*Operator Error***\n");

"resNum %d <= 0\n", gCDatas[count].resNum);
"ReadCDhata\n");

fprintf (stderr, “"\n");
exit(l);
}
if (gChatas[count] .resNum > gNumRes)
{
fprintf (stderr, "\n");
fprintf (stderr, "***QOperator Error***\n");
fprintf (stderr, "resNum %d > %d residues\n",
gChatas [count] .xresNum,
gNumRes) ;
fprintf (stderr, "ReadCData\n"};
fprintf (stderr, "\n");
exit(l);
}
if (gChatasicount].expError == 0.0)
{
fprintf (stderr, "\n");
fprintf (stderr, "***Qperator Error***\n");
fprintf (stderr, "Nobody is perfect.\n");
fprintf (stderr, "expError cannot be zero.\n");
fprintf (stderr, "{unless you want an infinite penalty)\n");
fprintf (stderr, "ReadCData\n");
fprintf(stderr, "\n"});
exit(l);
}
++count;
}
fclose(cFile);
return(l);

221

File ReadContFile.c
Reads the control file.
*/

#include "Torc.h"
#include <string.h>

void ReadContFile(char fileName[])

{
FILE *controlFile;
char aline[gdLineLength],
header [gdLineLength],
moveType [gdLineLength] ,
moveString [gdLineLength] ;
if((controlFile = fopen(fileName, "r")) == NULL)
{
fprintf (stderr, "\n");
fprintf (stderr, "File '%s' not found\n", fileName);
fprintf (stdexrr, "gCyclesAtT x\n");
fprintf (stderr, “gCyclesForceT x\n");
fprintf (stdexrr, "gTCycles x\n");
fprintf (stderr, "gTemperature x.x\n");
fprintf (stderr, "gTempFactor x.x\n");
fprintf (stderr, "gEquilSteps x\n");
#ifndef NORMTORC
fprintf (stderr, "gDiffusion x.x\n");
#endif
fprintf (stderr, "gCompensateRatio s (0.0 to 1.0, r for random\n");
fprintf (stderr, “"gTunnelRatio s (0.0 to 1.0, r for random\n");
fprintf (stderr, "gTorsionRatio s (0.0 to 1.0, r for random\n"};
fprintf (stderr, "gAtomRatio s (0.0 to 1.0, r for random\n");
fprintf (stderr, "gMovePerHistory x\n");
fprintf (stderr, "gMovePerOri x\n");
fprintf (stderr, "gMovePerTraj x\n");
fprintf (stderr, "gTrajRes x\n");
fprintf (stderr, "gSRandSeed x\n"};

fprintf (stderr, "(include the headers)\n");
fprintf (stderr, "(use '#' to comment a line and use default value)\n");
fprintf (stderr, "\n");
exit(1);
}

/* Hard wired default values */
gCyclesAtT = 2000;
gCyclesForceT = 200;
gTCycles = 0;

gTemperature = 300.0;
gTempFactor = 0.9;
gEquilSteps = 0;
gCompensateRatio = 0.0;
gTunnelRatio = 0.

gTorsionRatio = 0.0;
gAtomRatio = 0.0;
gHistoryFlag = FALSE;
gOriFlag = FALSE;
gTrajFlag = FALSE;
gSeedFlag FALSE;

fprintf(stdout, "\n");
fprintf (stdout, "control file:\n"};
while(fgets(aLine, gdLineLength, controlFile) != NULL)

222

sscanf (aline,

"%sv, &header);

if{strcmp (header, "gCyclesAtT") == Q)
{
sscanf (aline, "%s %d", &header, &gCyclesAtT);
fprintf (stdout, "gCyclesAtT %d\n", gCyclesAtT);
if(gCyclesAtT <= 0)
{
fprintf (stderr, "\n"});
fprintf (stderr, "gCyclesAtT must be >= 1\n");
fprintf(stderr, "ReadContFile\n");
fprintf (stdexr, "\n");
exit(1l);
}
}
if (stremp (header, "gCyclesForceT") == 0)
{
sscanf (aline, "%s %d", &header, &gCyclesForceT);
fprintf (stdout, "gCyclesForceT %d\n", gCyclesForceT);
if(gCyclesForceT <= 0)
{
fprintf (stderr, "\n"):;
fprintf (stderr, "gCyclesForceT must be >= 1\n");
fprintf (stderr, "ReadContFile\n");
fprintf (stderr, "\n"});
exit(l);
}
}

if (strcmp (header,
{

sscanf (aline,

"gTCycles") == 0)

"%s %d", &header, &gTCycles);

fprintf (stdout, "gTCycles %d\n", gTCycles);
if(gTCycles < 0)
{
fprintf (stderr, "\n");
fprintf(stdexrr, "gTCycles must be >= 0\n");
fprintf (stderr, *"ReadContFile\n");
fprintf (stderr, "\n");
exit(1l);
}
}
if (strcmp (header, "gTemperature") == 0)
{

}

if (strcmp (header,

{

sscanf (aLine,

"$s %1f", &header, &gTemperature);

fprintf (stdout, "gTemperature %.1f\n", gTemperature);
if(gTemperature <= 0.0)
{
fprintf (stderr, "\n");
fprintf (stderr, "gTemperature must be > 0.0\n"};
fprintf (stderr, "ReadContFile\n®*);
fprintf (stderr, "\n");
exit(1);
}

sscanf (aline,
fprintf (stdout,

"gTempFactor") == 0)

"%$s %1f", &header, &gTempFactor);
"gTempFactor

%.2f\n", gTempFactor);

if (gTempFactor <= 0.0)

{

fprintf (stderr,

" \n") ;

fprintf (stderr, "gTempFactor must be > 0.0\n"};

fprintf (stderr, "ReadContFile\n");
fprintf (stderr, "\n");
exit(1l);
}
}
if (strcmp (header, "gEquilSteps") == 0)
{
sscanf (aLine, “"%s %d", &header, &gEquilSteps);
fprintf (stdout, "gEquilSteps $d\n", gEquilSteps);
if(gEquilSteps < 0)
{
fprintf (stderr, "\n");
fprintf(stderr, "gEquilSteps must be >= 0\n");
fprintf (stderr, "ReadContFile\n*);
fprintf(stderr, "\n");
exit(1);
}
}
#ifndef NORMTORC
if (strcemp (header, “gDiffusion®) == 0)
{

sscanf (aLine, "%s %1f", &header, &gDiffusion);

fprintf (stdout, "gbiffusion %.le\n", gbhiffusion);
if(gDiffusion <= 0.0)
{
fprintf(stderr, "\n");
fprintf(stderr, "gDiffusion must be > 0.0\n");
fprintf (stderr, "ReadContFile\n");
fprintf (stderr, "\n");
exit(1);
}
}
#endif
if (strcmp(header, "gCompensateRatio") == 0)
sscanf (aLine, "%s %s", &header, &moveString);
if (strcmp (moveString, "r*) == 0)
{
do
{
gCompensateRatio = (double)} random() / gMaxRand; /* random */
}
while(gAtomRatio + gTorsionRatio +
gCompensateRatio + gTunnelRatio > 1.0);
}
else
gCompensateRatio = atof (moveString);
fprintf (stdout, "gCompensateRatio %.2f\n", gCompensateRatio);
if (gCompensateRatio < 0.0 || gCompensateRatio > 1.0)
{
fprintf (stderr, "\n");
fprintf(stderr, "gCompensateRatio must be >= 0.0 and <= 1.0\n");
fprintf(stderr, "ReadContFile\n®);
fprintf (stderr, “\n");
exit(1);
}
}
if (strcmp (header, "gTunnelRatio") == 0)

{

sscanf (aline,
if (strcmp (moveString,

"$s %s", &header, &moveString);

nru) == 0)

224

do
{
gTunnelRatio = (double) random() / gMaxRand; /* random */
}
while(gAtomRatio + gTorsionRatio +
gCompensateRatio + gTunnelRatio > 1.0);

}
else
gTunnelRatio = atof (moveString);
fprintf (stdout, "gTunnelRatio %.2f\n", gTunnelRatio);
if (gTunnelRatio < 0.0 || gTunnelRatio > 1.0)
{
fprintf (stderr, "\n");
fprintf (stderr, "gTunnelRatio must be >= 0.0 and <= 1.0\n");
fprintf(stderr, "ReadContFile\n");
fprintf (stderr, "\n");
exit(1);
}
if (strcmp (header, "gTorsionRatio") == 0)
{
sscanf(aline, "%s %s", &header, &moveString);
if (strcmp (moveString, "r") == 0)
{
do
{
gTorsionRatio = (double) random() / gMaxRand; /* random */
}
while(gAtomRatio + gTorsionRatio +
gCompensateRatio + gTunnelRatio > 1.0);
}
else
gTorsionRatio = atof (moveString);
fprintf (stdout, "gTorsionRatio %.2f\n", gTorsionRatio);
if (gTorsionRatio < 0.0 || gTorsionRatio > 1.0)
{
fprintf (stderr, "\n");
fprintf (stderr, "gTorsionRatio must be >= 0.0 and <= 1.0\n");
fprintf (stderr, "ReadContFile\n");
fprintf (stderr, "\n");
exit(1);
}
}
if (strcmp (header, "gAtomRatio") == 0)
{
sscanf(aline, "%s %s", &header, &moveString);
if (strcmp (moveString, *r*) == 0)
{
do
{

gAtomRatio = (double) ranaom() / gMaxRand; /* random */

while{gAtomRatio + gTorsionRatio +
gCompensateRatio + gTunnelRatio > 1.0);

}
else
gAtomRatio = atof{moveString);
fprintf (stdout, "gAtomRatio %$.2f\n", gAtomRatio);
if (gAtomRatio < 0.0 || gAtomRatio > 1.0)
{

fprintf (stderr, "\n");

fprintf (stderr, "gAtomRatio must be >= 0.0 and <= 1.0\n");

fprintf(stderr, "ReadContFile\n");
fprintf (stderr, “\n");

exit(l);
}
if (strcmp (header, "gMovePerHisFrame") == 0)
{
gHistoryFlag = TRUE;
sscanf (aLine, "%s %d", &header, &gMovePerHistory);
fprintf (stdout, "gMovePerHistory %d\n", gMovePerHistory);
if (gMovePerHistory <= 0)
{
fprintf(stderr, "\n");
fprintf(stderr, "gMovePerHistory must be > 0\n");
fprintf(stderr, "ReadContFile\n");
fprintf(stderr, “\n"});
exit(l);
}
}
if (strcmp (header, "gMovePerOri") == 0)
{
gOriFlag = TRUE;
sscanf(alLine, "%s %d", &header, &gMovePerOri);
fprintf (stdout, "gMovePerOri %d\n", gMovePerOri);
if (gMovePerOri <= 0)
{
fprintf (stderr, "“\n");
fprintf(stderr, "gMovePerOri must be > 0\n");
fprintf (stderr, "ReadContFile\n");
fprintf(stderr, "\n");
exit(1);
}
}
if (strcmp(header, 'gMovePerTraj") == 0)
{

gTrajFlag = TRUE;
gTrajRes = 1;
sscanf(aline, "%s %d", &header, &gMovePerTraj);

fprintf (stdout, "gMovePerTraj. %d\n", gMovePerTraj);
if (gMovePerTraj <= 0)
{

fprintf (stderr, "\n");

fprintf (stderr, "gMovePerTraj must be > 0\n");
fprintf(stderr, "ReadContFile\n");
fprintf(stderr, "\n");

exit(l);
}
}
if (strcmp (header, “"gTrajRes”) == 0)
{
sscanf (aLine, "%s %d", &header, &gTrajRes);
fprintf (stdout, "gTrajRes %d\n", gTrajRes);
if(gTrajRes <= 0 || gTrajRes >= gNumRes)
{
fprintf (stderr, "\n");
fprintf (stderr, "gTrajRes must be > 0 and < gNumRes\n");
fprintf (stderr, "ReadContFile\n");
fprintf (stderr, "\n");
exit(1l);
}
}

if (strcmp (header, "gSRandSeed") == 0)

{
gSeedFlag = TRUE;
sscanf(aLine, "%s %ld", &header, &gSRandSeed);
fprintf (stdout, "gSRandSeed $d\n", gSRandSeed);
if {gSRandSeed < 0)
{
fprintf{stderr, "\n");
fprintf(stderr, "gSRandSeed must be >= 0\n");
fprintf(stderr, "ReadContFile\n");
fprintf(stderr, "\n");
exit(l);
}
}

}

if(gAtomRatio + gTorsionRatio + gCompensateRatioc + gTunnelRatio != 1.0)
{

fprintf(stderr, "\n");

fprintf (stderr, "Move ratios do not add to 1.0.\n");

fprintf(stderr, "\n"});

exit(1l);
}

fprintf(stdout, "\n");
fclose(controlFile);
}

/*

File ReadDisFile.c

Reads the distance data file.
*/

#include "Torc.h"

int ReadDisFile(char fileName[l)
{

FILE *distanceFile;

char aLine[gdLineLength],
header{gdLineLength};

int found = FALSE,

disCount = 0;
double atom[3];

if((distanceFile = fopen(fileName, "xr")) == NULL)

{
fprintf(stdout, "\n");
fprintf (stdout, "File '%s' not found\n", fileName);
fprintf (stdout, "The format of the file should be:\n");
fprintf(stdout, "11 H 16 O 1.96 0.3\n");
fprintf{stdout, * 1 0 8 N 2.91 0.3\n");
fprintf(stdout, "\n");
return(0);

}

gNumDisData = 0;
while(fgets(aLine, gdLineLength, distanceFile) != NULL)
{
sscanf (aLine, "%s", &header);
if{header{0] != '#')
++gNumDisData;

rewind(distanceFile);

gDisDatas = (disData *) malloc(gNumDisData * sizeof (disData));
if(gbisDatas == (disData *) NULL)
{

fprintf(stderr, "\n");

fprintf(stderr, "out of memory!\n");

fprintf (stderr, "ReadDisFile\n");

fprintf (stderr, "\n");

exit(1);
}
while(fgets(aLine, gdLineLength, distanceFile) != NULL)
{

sscanf (aline, "%s", &header);

if (header([0] != '#')

{

sscanf (aLine, "%d %s %d %s %1f %1f",
&gDisDatas [disCount] .atomOneResNumber,
&gDisDatas [disCount] .atomOneType,
&gDisDatas [disCount] .atomTwoResNumber,
&gDisDatas {disCount] .atomTwoType,
&gDisDatas {disCount] .ala2Distance,
&gDisDatas [(disCount] .expError) ;

if (gDisDatas[disCount] .atomOneResNumber <= 0)
{
fprintf (stderr, "\n");
fprintf (stderr, "***Qperator Error***\n");
fprintf (stderr, "residue number %d <= 0\n",
gDhisDatas [disCount] .atomOneResNumber) ;
fprintf (stderr, "%s", aline);
fprintf (stderr, "ReadDisFile\n");
fprintf (stderr, "\n");
exit(1l);
}
if (ghisDatas[disCount]) .atomOneResNumber > gNumRes)
{
fprintf (stderr, "\n");
fprintf (stderr, "***Qperator Error***\n");
fprintf (stderr, "residue number %d > %d\n",
gDisDatas [disCount] .atomOneResNumber,
gNumRes) ;
fprintf(stderr, "%s", aline);
fprintf (stderr, "ReadDisFile\n");
fprintf (stderr, "\n");
exit(l);
}

if (gDisDatas[disCount] .atomTwoResNumber <= 0)

{
fprintf (stderr, "\n");
fprintf (stderr, "***Qperator Error***\n");
fprintf (stderr, "residue number %d <= O\n*,

gDhisDatas [disCount] .atomTwoResNumber) ;

fprintf(stderr, "%$s", alLine);
fprintf(stderr, "ReadDisFile\n");
fprintf (stderr, "\n");
exit(1l);

}

if (gDisDatas[disCount] .atomTwoResNumber > gNumRes)
{

228

fprintf (stderr, *"\n");

fprintf(stderr, "***Cperator Error***\n");

fprintf(stderr, "residue number %d > %d residues\n",
gDisDatas [disCount] .atomTwoResNumber,
gNumRes) ;

fprintf(stderr, "%s", aline);

fprintf(stderr, “ReadDisFile\n");

fprintf(stderr, "\n"};

exit(1);

}

FindAtom({(gDisDatas [disCount] .atomOneResNumber - 1,
gDisDatas [disCount] .atomOneType,
atom,
&found) ;
if (! found)
{
fprintf(stderr, "\n");:
fprintf(stderr, "***Qperator Error***\n");
fprintf(stderr, "Atom '%s' not found\n",
gDisDatas [disCount] .atomOneType) ;
fprintf(stderr, "residue %d\n",
gDisDatas [digCount] .atomOneResNumber) ;
fprintf(stderr, "ReadDisFile\n");
fprintf(stderr, "\n");
exit(1l);
}
FindAtom(gDisDatas [disCount] .atomTwoResNumber - 1,
gDisDatas[disCount] .atomTwoType,

atom,
&found) ;
if (! found)
{
fprintf(stderr, "\n");
fprintf(stderr, "***Cperator Error***\n");
fprintf(stderr, *“Atom '%s' not found\n",
gDisDatas [disCount] .atomTwoType) ;
fprintf(stderr, "residue %d\n",
gDisDatas [disCount] .atomTwoResNumber) ;
fprintf(stderr, "ReadDisFile\n");
fprintf(stderr, "\n");
exit(l);
}
if (gDisbatas[disCount] .expError == 0.0)
{
fprintf(stderr, "\n");
fprintf(stderr, "***Qperator Error***\n");
fprintf(stderr, “Nobody is perfect.\n");
fprintf(stderr, "expError cannot be zero.\n");
fprintf{stderr, *{unless you want an infinite penalty)\n");
fprintf(stderr, “"ReadDisFile\n"});
fprintf (stderr, "\n");
exit(l);
}
++disCount;
}
}
fclose(distanceFile);

return(l);

}

/*
File ReadFiles.c

Engine to read all needed files.

*/

#include "Torc.h"

void ReadFiles(char dirName[])

{

char coordInName [gdLineLength],
controlName [gdLineLength],
lambdaName [gdLineLength],
limitName [gdLineLength],
nDataName [gdLineLength],
cDataName [gdLineLength],
iDataName [gdLineLength],
ncDataName [gdLineLength],
nhDataName [gdLineLength],
ihDataName [gdLineLength],
distanceName [gdLineLength] ,
cdDataName [gdLineLength] ;

sprintf (coordInName, "%s/%s", dirName, "coord.in.pdb");

sprintf (controlName,

sprintf (lambdaName,
sprintf (limitName,
sprintf (nDataName,
sprintf (cDataName,
sprintf (iDataName,
sprintf (ncDataName,
sprintf (nhDataName,
sprintf (ihDataName,

"$s/%s", dirName,
"$s/%s", dirName,
"%s/%s", dirName,
"$s/%s", dirName,
"$s/%s", dirName,

"%$s/%s", dirName,

"%¥s/%s", dirName,

*$s/%s", dirName,

"$s/%s", dirName, "control");

"lambda") ;
*limit");
“nData");
“cData");
*iData");

"ncData") ;

*nhData") ;

“ihData") ;

sprintf(distanceName, "%$s/%s", dirName, "disData");

sprintf (cdDataName,

"$s/%s", dirName,

ReadPDBFile (coordInName) ;
ReadContFile(controlName) ;
ReadLamFile (lambdaName) ;
ReadLimFile (limitName) ;

ReadNData (nDataName) ;
ReadCData{cDataName) ;
ReadIData{iDataName) ;
ReadNCData (ncDataName) ;
ReadNHData (nhDataName) ;
ReadIHData(ihDataName) ;
ReadDisFile(distanceName) ;
ReadCDbhata (cdDataName) ;

}

/*
File ReadIData.c

"cdData") ;

Reads the indole chemical shift data file.

*/

#include "Torc.h"
#include <string.h>

int ReadIData(char fileName[])

{

FILE *iFile;
char aLine[gdLineLength],
header (gdLineLength];
int count = 0,
row,
col;

if((iFile = fopen(fileName, "r")) == NULL)

{
fprintf(stdout, "\n");
fprintf (stdout, "File '$s' not found\n", fileName);
fprintf (stdout, "The format of the file should be:\n");
fprintf (stdout, "resNum nName cName hName PASx PASy PASz");
fprintf(stdout, " alpha(deg) beta{deg) obsCS delta expError\n");
fprintf (stdout, "x s s s X.X X.X X.X"):
fprintf (stdout, " x.x X.X X.X X.X x.x\n");
fprintf (stdout, "etc.\n");
fprintf (stdout, *(include the header line)\n");
fprintf(stdout, "\n");
return(0) ;

}

gNumIData = 0;

while(fgets(alLine, gdLineLength, iFile) != NULL)
{
sscanf (aLine, "$s", &header);
if((header[0] != '#') && (strcmp(header, “"resNum") != 0))
++gNumIData;
}
rewind(iFile);

gIDatas = (csData *) malloc({gNumIData * sizeof (csData));
if(gIDatas == (csData *) NULL)
{
fprintf (stderr, "\n");
fprintf (stderr, "out of memory!\n"});
fprintf (stderr, "ReadIData\n");
fprintf (stderr, "\n");
exit(1l);
}

while(fgets(aline, gdLineLength, iFile) != NULL)
{
sscanf (aLine, "%sg", &header);
if((header([0] !'= '#*') && (strcmp(header, "resNum") != 0))

for(row = X; row <= Z; ++row)
for{col = X; col <= Z; ++col)
gIDatas[count].PAS[row] [col] = 0.0;

sscanf{aline, *%d %s %s %s %$1f %$1f %$1f %$1f %1f %1f %$1f %1f-,

&glDatas [count] .resNum,
&glIDatas [count] .atomlName,
&glDatas [count] .atom2Name,
&gIDatas [count] .atom3Name,
&gIDatas [count] .PAS[X] [X],
&gIDatas [count] .PAS[Y] [Y],
&glIDatas [count] .PAS[Z] [Z],
&glDatas [count] .alpha,
&gIDatas[count] .beta,
&gIDatas [count] .obsCS,
&gIDatas [count] .delta,

231

&gIDatas[count] .expError) ;
gIDatas(count].alpha *= gdRadPerDeg;
gIDatas[count] .beta *= gdRadPerDeg;
gIDatas[count] .delta *= gdRadPerDeg;

if(gIDatas[count].resNum <= 0)

{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(l);

}

" \nll) ’.

nkx*Operator Error***\n");

"resNum %d <= 0\n", gIDatas[count].resNum);
"ReadIData\n");

" \nll) I.

if (gIDatas[count].resNum > gNumRes)

{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

[\nll) '.
"**¥*Operator Error***\n");
"resNum %d > %d residues\n",

gIDatas [count] .resNum,

gNumRes) ;
fprintf (stderr,
fprintf (stderr,
exit(1l);
}

"ReadIData\n");
" \nll) ’.

if(gIDatas[count].expError == 0.0)

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

}

++count;
}
fclose(iFile);
return(l);

}

/*
File ReadIHData.c

"\n"};

nkk*Operator Error***\n");

"Nobody is perfect.\n");

"expError cannot be zero.\n");

"(unless you want an infinite penalty)\n");
"ReadIData\n");

u\nn) :

Reads the ih dipolar splitting data file.

*/

#include "Torc.h*
#include <string.h>

int ReadIHData({char fileName{])

{
FILE *ihFile;
char aline[gdLineLength],
header [gdLineLength];
int count = 0;
if({(ihFile = fopen(fileName, "x"))} == NULL)
{

232

}

fprintf (stdout,

"\n");

x.x\n");

fprintf(stdout, *File '%s' not found\n", fileName);
fprintf(stdout, *“The format of the file should be:\n");
fprintf(stdout, "resNum nName hName dip nuParallel expError\n");
fprintf (stdout, "x s s X.X X.X

fprintf(stdout, “"etc.\n");

fprintf (stdout, "(include the header lines)\n");

fprintf(stdout, *"\n");

return(0);

gNumIHData = 0;
while(fgets(aLine, gdLineLength, ihFile)
{

}

sscanf (alLine,
if ((header[0]
++gNumIHData;

rewind(ihFile);

"%$s", &header);
'= '#') && {strcmp (header,

gIlHDatas =

if (gIHDatas == (dipData *) NULL)

{
fprintf(stderr, "\n");
fprintf (stderr, "out of memory!\n");
fprintf(stderr, "ReadIHData\n");
fprintf(stderr, "\n");
exit(1l);

}

while(fgets(alLine, gdLineLength, ihFile)

{

sscanf (aline,
if ((header[0]
{

sscanf (aLine,

if (gIHDatas [count]

{

"$s", &header);
= '#') && (strcmp (header,

1= NULL)

"resNum")

!= NULL)

"resNum")

"3%d %s %s %1f $1f %1f-",
&gIHDatas [count] .resNum,
&gIHDatas [count] .atomlName,
&gIHDatas [count] .atom2Name,
&gIHDatas [count] .dip,
&gIHDatas [count] .nuParallel,
&gIHDatas [count] .expError);

}

fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
exit{l);

if (gIHDatas [count] .

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

fprintf (stderr,
fprintf (stderr,
exit(l);

.resNum <= 0)

" \nll) H

v***Operator Error***\n");
"resNum $d <= 0\n", gIHDatas[count]

"ReadIHData\n");
" \nll) I.

resNum > gNumRes)

" \nu) :

"***Operator Error***\n");
"resNum %d > %d residues\n",
glHDatas [count] .resNum, gNumRes);

"ReadIHData\n");
" \nll) ;

= 0))

(dipData *) malloc(gNumIHData * sizeof (dipData));

t= 0))

.resNum) ;

if (gIHDatas(count]

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

.expError == 0.0)

" \nH) I.

"***Operator Error***\n");

"Nobody is perfect.\n");

"expError cannot be zero.\n");

“{unless you want an infinite penalty)\n");
"ReadIHData\n");

L) \nll) ,.

}

exit(1l);
}

++count;

fclose(ihFile);
return(l);

}
/*

File ReadLamFile.c
Reads the lambda file.

*/

#include

*"Torc.h"

#include <string.h>

void ReadLamFile(char fileName[])

fopen(fileName,

[\nu) ;

“File '%s' not found\n",
format of the file should be:\n");

"The
'"ncs
"ces
*ics
L) nc
"nh
"ih
*dis
L) Cd

LI

"(include the headers)\n");

lambdal {ncs)\n");
lambda2 (ccs)\n");
lambda3 (ics)\n");
lambda4 {(n¢) \n");
lambda5 {nh)\n") ;
lambda6 {ih)\n");
lambda7 {dis)\n");
lambda8 {cd)\n");

lambda% {e)\n");

[\nn) :

{
FILE *lambdaFile;
char aline[gdLineLength],
header{gdLinelLength];
if ((lambdaFile =
{
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
fprintf(stderr,
#ifndef NORMTORC
fprintf(stderr,
#endif
fprintf (stderr,
fprintf(stderr,
exit(1);
}
gLambda[NCS] = 0.0;
gLambda[CCS] = 0.0;
gLambdal[ICS] = 0.0;
gLambda[NC] = 0.0;
glLambda[NH] = 0.0;
glambda[IH] = 0.0;
gLambda[DIS] = 0.0;

uru)) == NULL)

gLambda{CD] = 0.0;
#ifndef NORMTORC

gLambdal[E] = 0.0;
#endif
while(fgets(alLine, gdLineLength, lambdaFile) != NULL)
{
sscanf (aLine, "%s", &header);
if(strcmp (header, "ncs") == 0)
sscanf (aline, “%s %1f", &header, &gLambda[NCS]};
if(strcmp (header, "ccs") == 0)
sscanf (aLine, "%s %1f", &header, &gLambda[CCS]};
if(strcmp (header, "ics") == 0)
sscanf(aline, "%s %1f", &header, &gLambdal[ICS]);
if(strcmp(header, "nc') == 0)
sscanf (aLine, "%s %1f", &header, &gLambda(NC]);
if(strcmp (header, "nh") == Q)
sscanf (aLine, "%s %1f", &header, &glLambda[NH]);
if (strcmp (header, "ih") == 0)
sscanf (aline, "%s %1f", &header, &gLambda[IH]);
if (strcmp(header, "dis") == 0)
sscanf (alLine, "%s $%1f", &header, &gLambda([DIS]);
if (stremp (header, "cd") == 0)
sscanf(aline, "%s %1£f", &header, &gLambda([CD});
#ifndef NORMTORC
if (strcmp (header, "e") == 0)
sscanf (aline, "%s %1f", &header, &gLambdalE]);
#endif
}
fclose (lambdaFile) ;
}
/*
File ReadLimFile.c
Reads the limit file.
*/
#include "Torc.h"
#include <string.h>
int ReadLimFile(char fileName(])
{
FILE *limitFile;
char aline(gdLineLength],
header [gdLineLength];
int limitCount = 0;
if((limitFile = fopen{(fileName, "r")) == NULL)

{

fprintf (stderr,
fprintf (stderr,
fprintf({stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
return(0) ;

Il\n\l) ;
"File '%$s' not found\n", fileName);
"The format of the file should be:\n");

"resNum label low high\n"};
"X phi X.X X.X\n");
"% psi X.X X.X\n");
"% omega x.x x.x\n");
"(include the headers)\n");
"etc.\n");

" \n ") ;

gNumLimits = 0;

while(fgets(aline, gdLinelength, limitFile) != NULL)
{
sscanf (aline, "%s", &header);
if((header[0] != '#') && (strcmp(header, "resNum") != 0))
++gNumLimits;
rewind(limitFile);

glhimits = (limit *) malloc(gNumLimits * sizeof(limit));
if(gLimits == (limit *) NULL)

{
fprintf(stderr, "\n");
fprintf(stderr, "out of memory!\n");
fprintf(stderr, "file %s\n", fileName);
fprintf(stderr, "ReadLimFile\n");
fprintf(stderr, *\n");
exit(l);
}
while (fgets(aLine, gdLineLength, limitFile) != NULL)
{
sscanf (aLine, "%$s", &header);
if ((header[0] != '#') && (strcmp(header, “"xesNum") != 0))
{

sscanf (aLine, "%d %s %1f %1f",
&gLimits[limitCount] .resNum,
&gLimits[limitCount] .bondName,
&gLimits[limitCount].low,
&gLimits[limitCount].high);

if(gLimits{limitCount}.low >= gLimits[limitCount].high)

{
fprintf (stderr, "\n");
fprintf (stderr, "***Operator Error***\n");
fprintf(stderr, "low limit >= high limit\n");
fprintf(stderr, "%d %s %f %f\n",
gLimits (limitCount] .resNum,
glimits{limitCount] .bondName,
gLimits{limitCount].low,
gLimits{limitCount] .high);
fprintf(stderr, "ReadLimFile\n");
fprintf (stderr, "\n");
exit(l);
}
if(fabs (gLimits[limitCount}.low) > 180.0)
{
fprintf {stderr, *“\n%);
fprintf(stderr, "***QOperator Erroxr***\n"});
fprintf(stderr, "fabs(low) greater than 180.0\n");
fprintf(stderr, "%d %s %f %f\n",
gLimits[limitCount] .resNum,
gLimits [limitCount] .bondName,
gLimits[limitCount].low,
gLimits[limitCount] .high) ;
fprintf(stderr, "ReadLimFile\n"):;
fprintf (stdexxr, “\n");
exit(1);
}

if (fabs(gLimits[limitCount].high) > 180.0)

{

)

if((strcmp(gLimits[limitCount] .bondName,
{strcmp (gLimits (limitCount] . bondName,
{(strcmp (gLimits {limitCount] .bondName,

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

" \nlv) ;
"***Operator Error***\n');

“fabs(high) greater than 180.0\n");
"%d %s %f %f\n",

gLimits[limitCount].resNum,
gLimits[limitCount] .bondName,
gLimits[limitCount].low,
glimits{limitCount].high);

fprintf (stderr,
fprintf (stderr,
exit(l);

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

"ReadLimFile\n");

"\n");

'phi") = 0) &&
"psit) = 0) &&
"“omega") != 0))

" \nll) ;
"***Operator Error***\n');
"Torsion type '%s' wrong\n",

gLimits{limitCount] .bondName) ;

fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
exit(1);

"Use either phi, psi, or omega as labels.\n");
'ReadLimFile\n");
" \nu) ;

if((gLimits[limitCount].resNum == gNumRes) &&

{

}

(stremp (gLimits [limitCount] .bondName,

fprintf (stderr,
fprintf (stdexr,
fprintf (stderr,
fprintf (stderr,
fprintf (stdexr,
fprintf (stderr,
exit(l);

"omega") == 0))

" \l’l") ;

"***Operator Error***\n");

'residue %d", gLimits([limitCount].resNum);

" does not have an omega torsion angle.\n");
'"ReadLimFile\n");

n\nu) H

if(glimits[limitCount] .resNum < 1)

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

u\n") H

"***Operator Error***\n");

'"residue %d", gLimits{limitCount].resNum);
" does not exist.\n");

"ReadLimFile\n");

Il\nll) ’.

if(gLimits[limitCount] .resNum > gNumRes)

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(l);

++limitCount;

"\n");

"*k*Operator Error***\n");

'residue %d", gLimits[limitCount].resNum);

" larger than peptide (%d residues)\n", gNumRes);
"ReadLimFile\n");

"\n");

237

}
/*

}

fclose(limitFile);
return(l);

File ReadNCData.c
Reads the nc dipolar splitting data file.

*/

#include "Torc.h"
#include <string.h>

int ReadNCData(char fileName([])

{

FILE *ncFile;
char aLinelgdLineLength],
header [gdLineLength] ;

int count = 0;

if((ncFile = fopen(fileName, "r")) == NULL)

{
fprintf(stdout, "\n");
fprintf(stdout, "File '%s' not found\n", fileName);
fprintf(stdout, "The format of the file should be:\n");
fprintf(stdout, “resNum nName cName dip nuParallel expError\n®);
fprintf (stdout, "x s s X.X X.X x.x\n");
fprintf(stdout, "etc.\n");
fprintf (stdout, "{include the headers)\n");
fprintf(stdout, "\n");
return(0);

}

gNumNCData = 0;

while(fgets(alLine, gdLineLength, ncFile) != NULL)

{

}

sscanf (alLine, "%s", &header);
if ((header[0] != '#') && (strcmp(header, "resNum") != 0))

++gNumNCData;

rewind(ncFile);

gNCDhatas = (dipData *)} malloc(gNumNCData * sizeof(dipData));

if (gNCDatas == (dipData *) NULL)
{
fprintf(stderr, *\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "ReadNCData\n"');
fprintf(stderr, "\n");
exit(l);
}
while(fgets(aline, gdLineLength, ncFile) != NULL)
{
sscanf (aLine, "%s", &header);
if((header({0] != '#') && (strcmp(header, "resNum") != 0))
{
sscanf (aLine, "%d %s %s $1f %1f %1f",

&gNCDatas [count] . resNum,
&gNCDatas [count] . atomlName,

238

&gNCDatas (count] .atom2Name,
&gNCDatas [count] .dip,

&gNCDatas [count] .nuParallel,
&gNCDatas [count] .expError) ;

if (gNCbhatas [count]

{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

}

if (gNCDatas [count]

{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

.resNum <= 0)

" \nll) ;

"***Operator Error***\n");

"resNum %d <= 0\n", gNCDatas[count].resNum);
"ReadNCData\n") ;

ll\nll) ;

.resNum > gNumRes)

"\n"};
"***Operator Error***\n");
“resNum %d > %d residues\n',

gNCDatas [count] . resNum,

gNumRes) ;
fprintf (stderr,
fprintf (stderr,
exit(1l);
}
if (gNCDatas [count]
{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(l);
}

++count;
}
fclose(ncFile);
return(l);

}

/*
File ReadNData.c

"ReadNCDhata\n") ;
" \nll) ;

.expError == 0.0)

"\n");

"***Operator Error***\n");

"Nobody is perfect.\n");

"expError cannot be zero.\n");

“{unless you want an infinite penalty)\n");
"ReadNCData\n") ;

] \n") ;

Reads the nitrogen chemical shift data file.

*/

#include "Torc.h'
#include <string.h>

int ReadNData(char fileName[])

{
FILE *nFile;

char aLine[gdLineLengthl],
header [gdLineLength] ;

int count = O,
row,
col;

239

if((nFile =

{

}

fprintf (stdout,
fprintf {stdout,
fprintf {stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
return(0);

gNumNData = 0O;

while(fgets(aLine, gdLineLength, nFile)

{

}

sscanf (aLine,
if ((header[0]
++gNumNData;

rewind(nFile);

gNDatas =

fopen (£ileName,

upw)) == NULL)

"\n"};

"File '%s' not found\n", fileName);

"The format of the file should be:\n");

"resNum nName cName hName PASx PASy PASz");

" alpha(deg) beta(deg) obsCS delta expError\n");
"x s s s X.X X.X X.x");
"ox.x X.X X.X X.Xx xX.x\n");
"“etc.\n");

"(include the header line)\n");

" \nll) I.

= NULL)

"$s", &header);
= '#') && (strcmp(header,

YresNum") != 0}))

{csData *) malloc{gNumNData * sizeof (csData));

if(gNDatas == (csData *) NULL)

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

" \nu) ;

"out of memory!\n");
"ReadNData\n") ;

L} \nll) I.

exit(1);
}

while(fgets(aLine, gdLineLength, nFile)
{

l= NULL)

*"%$s", &header);
'= '#') && (strcmp (header,

sscanf (aLine,
if((header[0]
{
for(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
gNDatas[count] .PAS[row] [col] =

"resNum") != 0))

0.0;

sscanf (aline, "%d %s %s %s %1f $1f %$1f %1f %1f %1f %1f
&gNDatas [count] . resNum,
&gNDatas [count] .atomlName,
&gNDatas [count] .atom2Name,
&gNDatas [count] .atom3Name,
&gNDatas [count] .PAS[X] [X],
&gNDatas [count] .PAS{Y] (Y],
&gNbatas [count) .PAS{Z) {2],
&gNDatas [count] .alpha,
&gNDatas [count] .beta,
&gNDatas [count] .obsCS,
&gNDatas [count] .delta,
&gNDatas [count] .expError) ;
gNDatas [count] .alpha *= gdRadPerDeg;
gNDatas [count] .beta *= gdRadPerDeg;
gNDatas [count] .delta *= gdRadPerDeg;

$1f",

if (gNDatas [count] .resNum <= 0)
{

}

/*

}

fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(l);

“\n");

ek *Operator Error***\n");

"resNum %d <= 0\n", gNDatas[count].resNum);
"ReadNData\n") ;

Il\nll) I.

if (gNDatas[count] .resNum > gNumRes)

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

L \nll) ;
wxk*Operator Error***\n");
"resNum %d > %d residues\n",

gNDatas [count] .resNum, gNumRes) ;

fprintf(stderr,
fprintf (stderr,
exit(l);

"ReadNData\n") ;
ll\nll) H

if (gNDatas[count] .expError == 0.0)

{
fprintf (stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);
}
++count;
}
}
fclose(nFile);
return(l);

File ReadNHData.c
Reads the nh dipolar splitting data file.

*/

#include "Torc.h"
#include <string.h>

" \n") ;

"***Operator Exrror***\n");

"Nobody is perfect.\n");

"expError cannot be zero.\n");

"(unless you want an infinite penalty)\n");
"ReadNData\n") ;

“\n");

int ReadNHData(char fileName[])

{

FILE *nhFile;
char alLine[gdLineLength],
header[gdLineLength] ;
int count = 0;
if((nhFile = fopen(fileName, "r")) == NULL)
{
fprintf (stdout, "\n");
fprintf (stdout, "File '%s' not found\n", fileName);
fprintf (stdout, "The format of the file should be:\n");
fprintf(stdout, "resNum nName hName dip nuParallel expError\n");
fprintf (stdout, "x s s X.X X.X x.x\n");
fprintf(stdout, "etc.\n");
fprintf (stdout, " (include the header lines)\n");
fprintf (stdout, "\n");

241

return(0);

}

gNumNHData = 0;
while(fgets(aline, gdLineLength, nhFile) !'= NULL)
{
sscanf (aLine, "%s", &header);
if ((header (0] != ‘'#') && (strcmp(header, "resNum") != 0))
++gNumNHData;

}
rewind(nhFile);

gNHDatas = (dipData *) malloc(gNumNHData * sizeof(dipData));
if (gNHDatas == (dipData *) NULL)
{

fprintf(stderr, "\n");

fprintf (stderr, "out of memory!\n");

fprintf (stderr, "ReadNHData\n");

fprintf(stderr, "\n");

exit(1l);
}
while(fgets{alLine, gdLineLength, nhFile) != NULL)
{
sscanf (aLine, "%s", &header);
if ((header([0] != '#') && (strcmp(header, "resNum") != 0))
{

sscanf (aLine, "%d %s %s %1f $1f %1f",
&gNHDatas [count] . resNum,
&gNHDatas [count] . atomlName,
&gNHDatas [count] . atom2Name,
&gNHDatas [count] .dip,
&gNHDatas [count] .nuParallel,
&gNHDatas [count] .expError) ;

if (gNHDatas [count].resNum <= 0)

{
fprintf(stderr, “\n"});
fprintf (stderr, "***COperator Error***\n");
fprintf(stderr, "resNum %d <= 0\n", gNHDatas[count].resNum) ;
fprintf(stderr, "ReadNHData\n");
fprintf{stderr, "\n");
exit(l);
}

if (gNHDatas [count] .resNum > gNumRes)
{

fprintf(stderr, "\n");

fprintf (stderr, "***QOperator Error***\n"};

fprintf(stderr, “resNum 3d > %d residues\n",
gNHDatas [count] .resNum, gNumRes);

fprintf(stderr, "ReadNHData\n");

fprintf(stderr, "\n");

exit(1);
}
if (gNHDatas [count] .expError == 0.0)
{

fprintf (stderr, *\n");

fprintf(stderr, "***Qperator Error***\n");

fprintf (stderr, "Nobody is perfect.\n");

fprintf (stderr, "expError cannot be zero.\n");

fprintf (stderr, "(unless you want an infinite penalty)\n");
fprintf(stderr, "ReadNHData\n");

242

fprintf(stderr, "\n"});

exit(1l);
}
++count;
}
}
fclose(nhFile);
return(l);
}
/*

File ReadPDBFile.c
Reads the coodinates file.
*/

#include "Tcrc.h"
#include <string.h>

void ReadPDBFile(char fileName[])
{
FILE *coordFile;
char aLine[gdLineLength],
lastRes [gdLineLength],
tmp [2],
header(7],
residueNum(6],
currentRes [gdLineLength];
int atomCount = 0,
residueCount = 0,
charCount ;

if({(coordrile = fopen(fileName, "r")) == NULL)

{
fprintf (stderr, "\n");
fprintf (stderr, "File '%s' not found\n", fileName);
fprintf (stderr, "The file should be in PDB format.\n");
fprintf(stderr, "\n");
exit(l);

}

strcpy {lastRes, "empty");

gNumAtoms = 0;

gNumRes = 0;
while(fgets(aline, gdLineLength, coordFile) != NULL)
{

strcpy (header, "");
strcpy (tmp, "");
strcpy (residueNum, "*);
sscanf (aLine, "%s", &header);
if ((strcmp("ATOM", header) == 0) || (strcmp("HETATM", header) == 0))
{
for(charCount = strlen(alLine); charCount < 70; ++charCount)
strcat(aline, " ");
aLine[30] = '\0';
sscanf (&aLline[26], "%s", &tmp);
aLine[26] = '\0’';
sscanf (&aline{22], "%s", &residueNum);
strcat (residueNum, tmp);

}

++gNumAtoms;

if (strcmp(lastRes, residueNum)

{

1= 0)

strcpy (lastRes, residueNum);

++gNumRes ;

)

if (gNumAtoms == 0)

{

3

fprintf(stderr,
fprintf (stderr,
fprintf(stderr,
fprintf (stderr,
exit(l);

rewind (coordFile);

gAtoms =
if (gAtoms == (atom

{

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

"\n");
"k Kk *operator Error* 4k \n ") :

"No atoms read from file '%$s'.\n",
"\n*);

fileName);

(atom *) malloc(gNumAtoms * sizeof(atom));

*) NULL)

" \nll) ’.

"out of memory!\n");
“ReadPDBFile\n");

L} \nll) ;

}
gResidues = (residue *) malloc(gNumRes * sizeof (residue));
if(gResidues == (residue *) NULL)
{
fprintf (stderr, *\n");
fprintf (stderr, "out of memory!\n");
fprintf (stderr, "ReadPDBFile\n");
fprintf (stderr, "\n");
exit(l);
}
strcpy (lastRes, "empty");
while(fgets(aline, gdLineLength, coordFile} != NULL)
{
sscanf (aLine, “%s", &header);
if ((strcmp("ATOM", header) == 0) || (strcmp("HETATM", header) == 0))

{

for (charCount
strcat (aline,

gAtoms [atomCount] . footnoteNum =
sscanf (&aline[67],

= strlen{aline); charCount < 70; ++charCount)

" n)l.

~1;
"$d", &gAtoms [atomCount].footnoteNum) ;

aLine([67) = '\0';

gAtoms [atomCount] . tempFactor =
sscanf (&aLine[60],
"\O';

aline[60] =

0.0;
"$1f", &gAtoms[atomCount].tempFactor);

gAtoms [atomCount] .occupancy = 1.0;

sscanf (&aLine[54],
I\Ol;

aline([54] =

"$1f", &gAtoms[atomCount] .occupancy);

gAtoms [atomCount] .coords [Z] = 0.0;

sscanf (&aline[46],
I\OI;

aline[46] =

"$1f", &gAtoms[atomCount].coords[Z]);

244

gAtoms [atomCount] .coords[Y] = 0.0;
sscanf (&aLine{38], "$1f", &gAtoms[atomCount].coords(Y]);
aLine{38] = '\0';

gAtoms [atomCount] .coords [X] = 0.0;
sscanf (&aLine([30], "$%1f", &gAtoms{atomCount].coords[X]);
aLine([30] = '\0';

strcpy (gAtoms [atomCount] .insertRes, " ");
sscanf (&aline[26], "%s", &gAtoms[atomCount].insertRes);
aLine[26] = '\0';

gAtoms {atomCount] .resSegNum = residueCount + 1;
sscanf (&aline[22], "%d", &gAtoms[atomCount].resSeqNum);
aLine([22] = *\0';

strcpy (gAtoms [atomCount] .chainIdent, " “);
sscanf(&aLine([21], "%s", &gAtoms[atomCount].chainIdent);
aLine([21] = '\0';

strcpy (gAtoms [atomCount] .resName, "???");
sscanf (&aLine[17], "%s", &gAtoms[atomCount].resName);
aLine([17] = '\0';

strcpy (gAtoms [atomCount] .altLocInd, * *);
sscanf (&alLine[l6]}, "%s", &gAtoms[atomCount].altLocInd);
aLine[16] = '\0';

strcopy (gAtoms [atomCount] . atomName, “???");
sscanf (&aLine[12], "%s", &gAtoms[atomCount].atomName);
alLinef12] = '\0';

gAtoms [atomCount] .atomSegNum = atomCount + 1;
sscanf (&aLine[6}, "%d", &gAtoms[atomCount].atomSegNum);
alLinef6] = '\0';

strcpy (gAtoms [atomCount] .header, "?272?2");
sscanf (&aLine[0], "%s", &gAtoms[atomCount].header);
aLine[0] = '\O0';

sprintf (currentRes, "%d%s",
gAtoms {atomCount] . resSeqNum,
gAtoms [atomCount] . insertRes);
++atomCount;
if (strcmp(lastRes, currentRes) != 0)
{
gResidues[residueCount] .begin = atomCount - 1;
if(strcmp(lastRes, “empty") != 0)
gResidues[residueCount - l}.end = atomCount - 2;
strcpy {lastRes, currentRes);
++residueCount;
}
if(atomCount == gNumAtoms)
gResidues[residueCount -~ 1].end = gNumAtoms - 1;
}
}
fclose(coordFile) ;
}

/*
File RotateAtoms.c

Rotates necessary atoms after a defined bond.
*/

#include “Torc.h"
#include <string.h>

int RotateAtoms(atom *atomsIn,
int resNum,
char torTypel(],
double mag)

int found = FALSE,
backbone = FALSE,
atomCount;

double ql4],
rotMat [3] (3],
eulerMag,
sinEulerMag,
cosEulerMag,
aboutBond[3],
atoml [3],
atom2[3];

if (strcmp (torType, "phi") == 0)
{
FindAtom(resNum - 1, *"N", atoml, &found);
if (found)
FindAtom(resNum - 1, "CA", atom2, &found):;
if (! found)
return{0);

backbone = TRUE;

Vectorize(atom2, atoml, aboutBond);
Normalize{aboutBond) ;

eulerMag = mag * 0.5;

sinBulerMag = sin(eulerMag);
cosEulerMag = cos{eulerMag);

qlU] = cosEulerMag;

gl[l] = aboutBond[X] * sinEulerMag;
ql2] = aboutBond[Y] * sinEulerMag;
q[3] = aboutBond(Z] * sinEulerMag;

EulerMatrix(q, rotMat);

for (atomCount = gResidues[resNum - 1].begin;
atomCount <= gResidues[resNum - 1].end;

++atomCount)
{
if ((strcmp(atomsIn[atomCount] .atomName, "N") != 0) &&
(strcemp (atomsIn [atomCount] .atomName, "H") != 0) &&
{strcmp {atomsIn{atomCount] .atomName, “HN*) = 0) &&
(stremp (atomsIn [atomCount] .atomName, "HN1") != 0) &&
(strcmp (atomsIn[atomCount] .atomName, "CA") != 0))

DoRotation{rotMat, atomsIn[atomCount].coords, atom2);

}

}

else if (strcmp(torType, "psi") == 0)

{
FindAtom{resNum - 1, "CA", atoml, &found);
if (found)

246

FindAtom(resNum - 1, "C", atom2, &found);
if (! found)
return(0);

backbone = TRUE;

Vectorize(atom2, atoml, aboutBond);
Normalize (aboutBond);

eulerMag = mag * 0.5;

sinBulerMag = sin(eulerMag);
cosEulerMag = cos(eulerMag);

ql0] = cosEulerMag;
qfl] = aboutBond[X] * sinEulerMag;
qf2] = aboutBond[Y] * sinEulerMag;

qf3] = aboutBond[Z] * sinEulerMag;
EulerMatrix(qg, rotMat);

for(atomCount = gResidues[resNum - 1].begin;
atomCount <= gResidues(resNum - 1].end;

++atomCount)
{
if (stremp(atomsIn[atomCountl .atomName, "O") == 0)
DoRotation(rotMat, atomsIn[atomCount].coords, atom2);
}
}
else if(strcmp (toxrType, "omega") == 0)
{
FindAtom(resNum ~ 1, "C", atoml, &found);
if (found)
FindAtom(resNum, "N", atom2, &found);
i£(!found)
return(0);
backbone = TRUE;
Vectorize(atom2, atoml, aboutBond);
Normalize{aboutBond);
eulerMag = mag * 0.5;
sinEulerMag = sin(eulerMag);
cosEulerMag = cos(eulerMag);
ql0] = cosEulerMag;
qll] = aboutBond([X] * sinEulerMag; .
ql[2] = aboutBond[Y] * sinEulerMag;
ql[3] = aboutBond([Z] * sinEulerMag;
EulerMatrix (g, rotMat);
}
else if(strcmp(torType, "chil") == 0)
{
FindAtom(resNum ~ 1, "CA", atoml, &found);
if (found)
FindAtom(resNum, "CB", atom2, &found);
if (! found)
return(0);

Vectorize(atom2, atoml, aboutBond);
Normalize (aboutBond) ;

eulerMag = mag * 0.5;

sinEulerMag = sin(eulerMagq);
cosEulerMag = cos(eulerMag) ;

ql0] = cosEulerMag;
ql[l] = aboutBond[X] * sinEulerMag;
qf2] = aboutBond[Y] * sinEulerMag;

247

q[3]) = aboutBond[Z] * sinEulerMag;
EulerMatrix(q, rotMat);

for (atomCount = gResidues{resNum - 1].begin;
atomCount <= gResidues[resNum - 1].end;

++atomCount)
{
if ((strcmp(atomsIn[atomCount] .atomName, "N") != 0) &&
(strcmp (atomsIn[atomCount] .atomName, "H") != 0) &&

(stremp (atomsIn[atomCount] .atomName, "HN") (= () &&
(strcemp (atomsIn[atomCount} .atomName, "CA") != 0) &&

(strcmp (atomsIn[atomCount] .atomName, "HA") != 0) &&
(strcemp (atomsIn[atomCount] .atomName, “C") != 0) &&
(stremp(atomsIn{atomCount] .atomName, “0O") != 0))

DoRotation(rotMat, atomsIn[atomCount].coords, atom2);

}

}

else

{
fprintf(stderr, "\n");
fprintf(stderr, "***CQperator Error***\n");
fprintf(stderr, "Torsion type ‘'%s' wrong\n", torType);
fprintf(stderr, "Use phi, psi, omega, chil, chi2, chi3 as labels.\n");
fprintf(stderr, "RotateAtoms\n"});
fprintf(stderr, "\n"});
exit(1l);

}

if (backbone)
{
for (atomCount = gResidues[resNum].begin;
atomCount < gNumAtoms;
++atomCount)
DoRotation(rotMat, atomsIn[atomCount].coords, atom2);

/*

Rotate everything back by 0.5 so that entire system is affected by the

torsion move.

*/
eulerMag = -mag * 0.25;
sinEulerMag = sin(eulerMag);
cosEulerMag = cos(eulerMag) ;
q[0] = cosEulerMag;
alll aboutBond[X] * sinBulerMag:
al2} aboutBond[Y] * sinEulerMag;
al3] = aboutBond[Z] * sinEulerMag;
EulerMatrix(qg, rotMat);

for (atomCount = 0; atomCount < gNumAtoms; ++atomCount)
DoRotation(rotMat, atomsIn[atomCount].coords, atom2);

}

return(l);

}

/*

File Torc.c

Drives the refinement.
*/

#define MAIN
#define 1dNoPrint 0
#define 1dYesPrint 1

#include "Torc.h"
#include <string.h>

/* for time command */
#include <time.h>

/* for times command */
#include <sys/types.h>
#include <sys/times.h>
/* for CLK_TCK */
#include <limits.h>

#ifdef NORMTORC
int main(int argc,
char *argvl(])
felse
int torc_(char inDirNamel],
int *dirLength)
#endif
{
char dirName [gdLineLength],
coordOutName [gdLineLength],
historyName[gdLineLength],
trajFileName[gdLineLength],
oriFileName[gdLineLength];
struct tms cpuTimeStart,
cpuTimeEnd;
struct tm *tmPointer;
time_t localTime;
int limitLineNum,
resNum,
foundMove,
keepMove,
numIterAtT,
numTIterations = 0,
continueT,
continueAtT,
numsuccess,
count,
timeStart,
timeEnd,
sRandSeed,
historyCount = 0,
compensateFlag,
tunnelFlag,
atomFlag,
torsionFlag;
unsigned long int totalCalc = 0,

successfulMoves = 0

numAttCompensate
numAccCompensate
numAttTunnel = 0,
numAccTunnel = O,
numAttAtom = O,
numAccAtom = O,

Inon

numAttTorsion 0,
numAccTorsion = 0;
double penalty,
newPenalty,
mag,

0
0

’
'

249

ranNum,

/*
highLimit,
highMag,
lowMag,

*/
cpuUserTime,
cpuSystemTime,
cpuTimeTotal,
lowestPenalty;

#ifdef NORMTORC
if(argc == 1)

{
fprintf (stdout, "\nProgram %s\n", argv[0]);
fprintf (stdout, "(use '%s [directory name] ')\n", argv{0l);
fprintf (stdout, “(use '%s help' for help)\n*, argv([0]);
fprintf (stdout, "\nEnter directory name: "};
scanf ("%$s", &dirName);

else if(argc == 2)
sprintf (dirName, "%s", argv(l]);

else

{
fprintf(stderr, "\n");
fprintf (stderr, "***Only one directory name, please.***\n");
fprintf(stderr, "usage: %s [directory name]\n", argv{0]);
fprintf(stderr, "The directory name is optional.\n");
fprintf (stderr, "\n");
exit(1l);

}

#else

for{(count = 0; count < *dirLength; ++count)
dirName [count] = inDirName[count];

dirName{[count] = '\0';
#endif
if((strcmp(dirName, "help") == 0) || (strcmp(dirName, "HELP") == 0))
{
PrintHelp();
exit(1);
}

sprintf (coordOutName, "%s/%s", dirName, “"coord.out.pdb");

fprintf (stdout, "\n");
fprintf (stdout, "%s\n", gdVersion);

localTime = time('\0');
tmPointer = localtime(&localTime);
fprintf{stdout, "%s\n", asctime{tmPointer));

fprintf (stdout, "Refinement of %s\n", dirName);
gMaxRand = pow(2, 31) - 1;

ReadFiles (dirName) ;

fprintf (stdout, "%d residues\n", gNumRes);
fprintf (stdout, "%d atoms\n", gNumAtoms);
fprintf (stdout, "\n");

fflush(stdout);

if (gSeedFlag == TRUE)
sRandSeed = gSRandSeed;
else
sRandSeed = time(0);
srandom (sRandSeed) ;
fprintf (stdout, "random seed = $10d\n\n", sRandSeed);

DeclAxray();

CopyCoord(gAtoms, gAtomsInitial);
CopyCoord (gAtoms, gAtomsLowest);
CopyCooxrd(gAtoms, gAtomsLastState);

#ifndef NORMTORC

MakeXYZArray (gAtoms, gXArray, gYArray, gZArray);

#endif

for(count = 0; count < gNumNData; ++count)
{

PAS_MF (gNDatas [count] . PAS,
gNDatas {count].alpha,
gNDatas[count].beta,
gNDatas [count] .MF) ;

}
for(count = 0; count < gNumCData; ++count)
{

PAS_MF(gCDatas[count].PAS,
gChatas[count).alpha,
gChatas([count] .beta,
gCDatas[count] .MF) ;

}
for{(count = 0; count < gNumIData; ++count)

{

PAS_MF(gIDatas[count].PAS,
glIDatas[count].alpha,
gIDatas{count].beta,
gIDatas[count] .MF);

}

gInitTemp = gTemperature;
gKBInitT = gInitTemp * gdBoltzmann;

if (gTrajFlag)

{
sprintf(trajFileName, "$s/%s", dirName, “trajectory");
if((gTrajFile = fopen(trajFileName, "w")) == NULL)
{

fprintf(stderr, "\n");
fprintf (stderr, "Could not open trajectory file: ");
fprintf (stdexr, "%$s\n", trajFileName);
fprintf(stderr, "\n");
exit{l);
}
fprintf(gTrajFile, "%-4s%3d%ls\n",
gAtoms [gResidues[gTrajRes - 1] .begin].resName,
gAtoms [gResidues [gTrajRes - 1} .begin).resSegNum,
gAtoms [gResidues[gTrajRes - 1].begin].insertRes);
fprintf(gTrajFile, “"step\tt");
fprintf(gTrajFile, "\tncs\tcecs\tics\tnc\tnh\tih\tcd");

#ifndef NORMTORC

#endif

fprintf(gTrajFile,

fprintf(gTrajFile,

"\te");

"\tncsP\tccsP\ticsP\tncP\tnhP\tihP\tdisP\tcdpP") ;

251

#ifndef NORMTORC
fprintf(gTrajFile, "\teP");
#endif
fprintf (gTrajFile, "\ttotP");
fprintf(gTrajFile, *\n*);
fprintf (gTrajFile, "%i", totalCalc);
fprintf(gTrajFile, "\t%.4e", gTemperature);
CalcTotP(ldNoPrint) ;
fprintf(gTrajFile, *\t%.4f", gCalcNCS);
fprintf(gTrajFile, °"\t%.4f", gCalcCCS);
fprintf(gTrajFile, "\t%.4f", gCalcICS);
fprintf(gTrajFile, “"\t%.4f", gCalcNC);
fprintf (gTrajFile, "\t%.4£f", gCalcNH);
fprintf (gTrajFile, "“\t%.4£", gCalclH);
fprintf (gTrajFile, "\t%.4f", gCalcCD);
#ifndef NORMTORC
fprintf(gTrajFile, "\t%.4f", gCalcE);
#tendif
fprintf (gTrajFile, *\t%.4f", gCalcNCSP);
fprintf (gTrajFile, "\t%.4£", gCalcCCSP);
fprintf(gTrajFile, "\t%.4f", gCalcICSP);
fprintf (gTrajFile, "\t%.4f", gCalcNCP);
fprintf(gTrajFile, "\t%.4£", gCalcNHP);
fprintf(gTrajFile, "\t%.4f", gCalcIHP);
fprintf (gTrajFile, "\t%.4£", gCalcDISP);
fprintf (gTrajFile, "\t%.4f", gCalcCDP);
#ifndef NORMTORC
fprintf (gTrajFile, "\t%.4£f", gCalcEP};
#endif
fprintf(gTrajFile, “\t%.4f", gCalcTotP);
fprintf(gTrajFile, "\n");
fflush(gTrajFile);
}

penalty = CalcTotP(ldYesPrint);
lowestPenalty = penalty;
CalcTorsion();

CalcResPT();

if (gOriFlag)

{
sprintf (oriFileName, "%s/%s", dirName, "orientation");
if((gOriFile = fopen(oriFileName, "w")) == NULL)

{
fprintf (stderr, "\n");
fprintf (stderr, "Could not open orientation file: ");
fprintf (stderr, "%$s\n", oriFileName);
fprintf(stderr, "\n");
exit(1);
}

fprintf(gOriFile, *step\tbondType");
CalcOri("N-H", totalCalc, ldNoPrint);
fflush(gOriFile};
}
fprintf(stdout, "Residue Bond Orient Angle Direct\n");
fprintf(stdout, "~----om —-mm —mmm e e \n");
CalcOri("N-H", totalCalc, ldYesPrint);
fprintf({stdout, "\n");
CalcOri("C-0O", totalCalc, ldYesPrint);
fprintf(stdout, "\n");

fflush(stdout);

252

#ifndef NORMTORC
for(count = 0; count < gNumAtoms; ++count)

{
gXForceOldState[count]
gYForceOldState[count]
gZForceOldState[count]

gXForce[count] ;
gY¥Force[count] ;
gZForce[count] ;

}
#endif
/*
highLimit = 0.0;
for(count = 0; count < gNumLimits; ++count)
{
if(highLimit < fabs(gLimits[count].low))
highLimit = fabs(gLimits([count].low);
if (highLimit < fabs{gLimits[count].high))
highLimit = fabs{(gLimits[count].high);
}
*/
if (gHistoryFlag)
{
++historyCount;
sprintf (historyName, "$%$s/%s%04d.pdb*,
dirName, "history/coord", historyCount);
OutputPDB(historyName, gAtoms);
}

timeStart = time(0);
times (&cpuTimeStart) ;

continueT = TRUE;

do

{
continueAtT = TRUE;
nunSuccess = 0;
numIterAtT = 0;

++numTIterations;
/*

lowMag = highLimit;

highMag = -highLimit;
*/

do

{

++numIterAtT;

compensateFlag = FALSE;
tunnelFlag = FALSE;
atomFlag = FALSE;
torsionFlag = FALSE;

ranNum = (double) random{) / gMaxRand;

if ((gCompensateRatio > 0.0) &&
(ranNum <= gCompensateRatio))

{
compensateFlag = TRUE;

do

foundMove = MoveCompensate (&resNum) ;

while (! foundMove) ;
++gNumMoveCompAtt [resNum ~ 11;

253

}

else if((gTunnelRatio > 0.0) &&
(ranNum <= gTunnelRatio + gCompensateRatio) &&
(ranum > gCompensateRatio))

tunnelFlag = TRUE;

do

foundMove = MoveTunnel (&resNum) ;
while (! foundMove) ;
++gNunMoveTunnAtt [resNum - 1];

}
#ifndef NORMTORC
else if((gTorsionRatio > 0.0) &&
(ranNum <= gTorsionRatio + gTunnelRatio + gCompensateRatio) &&
(ranNum > gCompensateRatio + gTunnelRatio))
#else
else
#endif
{
torsionFlag = TRUE;

do
{
limitLineNum = (int)
(gNunLimits * random() / (gMaxRand + 1.0));
mag = GetMag(gLimits[limitLineNum].low,
gLhimits[limitLineNum].high) * gdRadPerDeg;
foundMove = RotateAtoms{gAtoms,
gLimits[limitLineNum] .resNum,
gLimits[limitLineNum] .bondName,
mag) ;
resNum = gLimits[limitLineNum] .resNum;
}
while(!foundMove);
++gNumMoveTorsAtt [resNum - 1];

}
#ifndef NORMTORC
else if((gAtomRatio > 0.0) &&
(ranNum <= gAtomRatio + gTorsionRatio +
gTunnelRatio + gCompensateRatio) &&
(ranNum > gTorsionRatio + gCompensateRatio + gTunnelRatio))

atomFlag = TRUE;
MoveAtoms (gAtoms, gDiffusion);
++numAttAtom;

}

else

{
fprintf(stdexr, "\n");
fprintf {stderr, "No move possible.\n");
fprintf(stderr, "\n");
exit(l);

}

MakeXYZArray (gAtoms, gXArray, gYArray, gZArray);
#endif

newPenalty = CalcTotP(ldNoPrint);
++totalCalc;

/*
if (newPenalty < lowestPenalty)

lowestPenalty = newPenalty;
CopyXYZ (gAtoms, gAtomsLowest);

*/

keepMove = Metropolis(newPenalty ~ penalty);
if (keepMove)

penalty = newPenalty;
CopyXYZ (gAtoms, gAtomsLastState);
#ifndef NORMTORC
for(count = 0; count < gNumAtoms; ++count)

{
gXForceOldState[count] = gXForcel[count];
gYForceOldState[count] = gYForce[count];
gZForceOldState[count] = gZForce([count];

}

#endif
++rumSuccess;
++successfulMoves;

if (compensateFlag) ++gNumMoveCompAcc [resNum - 1];
else if(tunnelFlag) ++gNumMoveTunnaAcc|[resNum - 1];
else if(atomFlag) ++numAccAtom;

else if(torsionFlag) ++gNumMoveTorsAcc[resNum - 1];

if ((gOriFlag) && (successfulMoves % gMovePerOri == 0))

{
CalcOri("N-H", totalCalc, 1ldNoPrint);
CalcOri(“C-O", totalCalc, ldNoPrint});
fflush(gOriFile);

}

if ((gTrajFlag) && (successfulMoves % gMovePerTraj == 0))
{
fprintf(gTrajFile, "%i", totalCalc);
fprintf (gTrajFile, "\t%.4e", gTemperature);
fprintf (gTrajFile, "\t%.4f", gCalcNCS);
fprintf (gTrajFile, *"\t%.4f", gCalcCCS);
fprintf(gTrajFile, "\t%.4f", gCalcICS);
fprintf(gTrajFile, "\t%.4f", gCalcNC);
fprintf(gTrajFile, “"\t%.4f", gCalcNH);
fprintf (gTrajFile, "\t%.4f", gCalcIH);
fprintf (gTrajFile, "\t%.4f", gCalcCD);
#ifndef NORMTORC
fprintf(gTrajFile, "\t%.4f", gCalcE);
#endif
fprintf(gTrajFile, "\t%.4£f", gCalcNCSP);
fprintf(gTrajFile, "\t%.4£", gCalcCCSP);
fprintf(gTrajFile, "\t%.4f", gCalcICSP);
fprintf(gTrajFile, "\t%.4£f", gCalcNCP);
fprintf(gTrajFile, "\t%.4£f", gCalcNHP);
fprintf(gTrajFile, °"\t%.4f", gCalcIHP);
fprintf (gTrajFile, "\t%.4£", gCalcDISP);
fprintf(gTrajFile, "\t%.4£f", gCalcCDP);
#ifndef NORMTORC
fprintf (gTrajFile, "\t%.4f", gCalcEP);
#endif
fprintf(gTrajFile, "\t%.4f", gCalcTotP);
fprintf(gTrajFile, "\n");
fflush(gTrajFile);

/*
if (highMag < fabs(mag))
highMag = fabs (mag);
if (lowMag > fabs(mag))
lowMag = fabs{mag);
*/
}
else
{

CopyXYZ (gAtomsLastState, gAtoms);

#ifndef NORMTORC
MakeXYZArray (gAtoms, gXArray, gYArray, gZArray);
for(count = 0; count < gNumAtoms; ++count)

{
gXForce[count] = gXForceOldState[count];
gYForce[count] = gYForceOldstate{[count];
gZForce[count] = gZForce0ldState(count];

#endif
}

if((gHistoryFlag) &&
(totalCalc % gMovePerHistory == 0))

{

++historyCount;

sprintf (historyName, "“%s/%s%04d.pdb",

dirName, "history/coord", historyCount);

OutputPDB (historyName, gAtoms);

}

if (numIterAtT >= gCyclesAtT)
continueAtT = FALSE;
if (numSuccess >= gCyclesForceT)
continueAtT = FALSE;
if (penalty == 0.0)
continueAtT = FALSE;
}
while (continueAtT) ;

fprintf (stdout, *\npenalty = %17.11£f\n", penalty);
fprintf (stdout, “"temperature = %14.4e\n", gTemperature);
/*
if (numSuccess == 0)
{
highMag = 0.0;
lowMag = 0.0;
}
#ifdef NORMTORC

fprintf(stdout, "highMag

fprintf (stdout, "lowMag
#else

if (gTorsionRatio > 0.0)

{

%17.11f\n", highMag / gdRadPerbDegq);
$17.11f\n", lowMag / gdRadPerDeg) ;

]

fprintf (stdout, "highMag
fprintf (stdout, "lowMag

$17.11f\n", highMag / gdRadPerDeg) ;
%17.11f\n", lowMag / gdRadPerDegq);

}

#endif

*/
fprintf(stdout, "numSuccess = %5d", numSuccess);
fprintf(stdout, " (force %d)", gCyclesForceT);

256

/*

fprintf(stdout, " (tried %d4)", numlterAtT);
fprintf (stdout, " (new %d)\n", gCyclesAtT);
fflush(stdout);

if ({ (numSuccess == 0) && {lowestPenalty < penalty))
{
fprintf(stdout, "\nJump starting\n");
fprintf(stdout, "Lowest penalty found = %.11f\n", lowestPenalty);
fprintf(stdout, "Setting numSuccess to 1l\n");
fflush(stdout);
numSuccess = 1;
CopyXYZ (gAtomsLowest, gAtoms);

#ifndef NORMTORC

MakeXYZArray (gAtoms, gXArray, gYArray, gZArray):

#endif

*/

}

if (totalCalc >= gEquilSteps)
gTemperature *= gTempFactor;

if (gTCycles > 0)
{
if (numTIterations >= gTCycles)
continueT = FALSE;
}
else
{
if (numSuccess == 0)
continueT = FALSE;
if{penalty == 0.0)
continueT = FALSE;
}
}
while (continueT) ;

timeEnd = time(0);
times (&cpuTimeEnd) ;
cpuUserTime = ((float) (cpuTimeEnd.tms_utime - cpuTimeStart.tms_utime)) /
((float) (CLK_TCK)) ;
cpuSystemTime = ((float) (cpuTimeEnd.tms_stime - cpuTimeStart.tms_stime)) /
({float) (CLK_TCK));
cpuTimeTotal = cpuUserTime + cpuSystemTime;

fprintf (stdout, "\n\nCompleted in %d seconds (%.2f hours)\n*,
timeEnd - timeStart, (timeEnd - timeStart) / 3600.0);

fprintf(stdout, "Completed in %.4f cpu seconds (%.2f hours)\n",
cpuTimeTotal, cpuTimeTotal / 3600.0);

fprintf(stdout, "Completed %d temperature iterations\n", numTIterations);

fprintf{stdout, *Completed %d successful moves\n",
successfulMoves) ;

fprintf (stdout, "Completed %.4f successful moves/cpu second\n",
(float) successfulMoves / cpuTimeTotal);

fprintf (stdout, "Completed %d calculations\n", totalCalc);

fprintf (stdout, "Completed %.4f calculations/cpu second\n",
(float) totalCalc / cpuTimeTotal);

fprintf (stdout, "\n");

fprintf (stdout, "residue Co (acc/att)");
fprintf(stdout, " Tu (acc/att) To {acc/att)\n");
fprintf (stdout, "------- ~crmemco-ooooo——- ")i

fprintf(stdout, *

for(count = 0; count < gNumRes; ++count)

{
fprintf (stdout,

"%7d $7d / %7d %7d / %7d %7d / %7d\n",

count. + 1,
gNumMoveCompAcc [count},
gNumMoveCompAtt [count],
gNumMoveTunnAcc [count],
gNumMoveTunnAtt [count],
gNumMoveTorsAcc [count],
gNumMoveTorsAtt [count]) ;

numAttCompensate += gNumMoveCompatt [count];
numAccCompensate += gNumMoveCompAcc [count];

numAttTunnel +=
numaAccTunnel +=

gNumMoveTunnAtt [count] ;
gNumMoveTunnAcc [count] ;

numAttTorsion += gNumMoveTorsAtt [count];
numAccTorsion += gNumMoveTorsAcc [count];

}

fprintf (stdout, "\n");

fprintf(stdout, "

accepted attempted");

fprintf(stdout, " acc/att acc/tot att/tot\n");
if (gCompensateRatio > 0.0)

{
fprintf (stdout,

"compensate %94 %9d4",

numAccCompensate,
numAttCompensate) ;

fprintf (stdout,

* %7.2f",

{double) numAccConmpensate / numAttCompensate);

fprintf (stdout,
fprintf (stdout,
}

" §7.2f", (double) numAccCompensate / totalCalc);
" $7.2f\n", (double) numAttCompensate / totalCalc);

if (gTunnelRatio > 0.0)

{
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
}
#ifndef NORMTORC

"tunnel $£9d %9d", numAccTunnel, numAttTunnel);
v $7.2f", (double) numAccTunnel / numAttTunnel);

v %7.2f", (double) numAccTunnel / totalCalc);

" %7.2f\n", (double) numAttTunnel / totalCalc);

if(gTorsionRatio > 0.0)

{
#endif
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
#ifndef NORMTORC
}

"torsion $9d %9d", numAccTorsion, numAttTorsion);
v %7.2f", (double) numAccTorsion / numAttTorsion);

v $7.2f", (double) numAccTorsion / totalCalc);

v %7.2f\n", (double) numAttTorsion / totalCalc);

if (gAtomRatio > 0.0)

{
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
}
#endif

"atom %9d $9d", numAccAtom, numAttAtom);
" $7.2f", (double) numAccAtom / numAttAtom);

v %7.2f", (double) numAccAtom / totalCalc);

" %$7.2f\n", (double) numAttAtom / totalCalc);

fprintf(stdout, "\n");

if(gTrajFlag)
{

fprintf(gTrajFile, *%i", totalCalc);
fprintf(gTrajFile, "\t%.4e", gTemperature / gTempFactor);
CalcTotP(1ldNoPrint);
fprintf (gTrajFile, "\t%.4f", gCalcNCS);
fprintf (gTrajFile, *\t%.4f", gCalcCCS);
fprintf(gTrajFile, *\t%.4f", gCalcICS);
fprintf(gTrajFile, *\t%.4f", gCalcNC);
fprintf(gTrajFile, "\t%.4f", gCalcNH);
fprintf (gTrajFile, "\t%.4f", gCalcIH);
fprintf(gTrajFile, "\t%.4f*, gCalcCD);
#ifndef NORMTORC
fprintf(gTrajFile, "\t%.4f", gCalcE);
#endif
fprintf (gTrajFile, "\t%.4£f", gCalcNCSP);
fprintf(gTrajFile, "\t%.4f", gCalcCCSP);
fprintf(gTrajFile, "\t%.4f", gCalcICSP);
fprintf(gTrajFile, "\t%.4f", gCalcNCP);
fprintf (gTrajFile, "\t%.4f", gCalcNHP);
fprintf (gTrajFile, "\t%.4f", gCalcIHP);
fprintf(gTrajFile, "\t%.4f", gCalcDISP);
fprintf(gTrajFile, "\t%.4f", gCalcCDP);
#ifndef NORMTORC
fprintf(gTrajFile, "\t%.4f", gCalcEP);
#endif
fprintf(gTrajFile, "\t%.4f", gCalcTotP);
fprintf(gTrajFile, "\n"});

fclose(gTrajFile);
}
if(gHistoryFlag)
{
++historyCount;
sprintf (historyName, "$%s/%s%04d.pdb",
dirName, "history/coord", historyCount);
QutputPDB (historyName, gAtoms);
}
else

(
fprintf(stdout, "Saving final coordinates as: ");
fprintf(stdout, "%s\n", coordOutName);
OutputPDB (coordOutName, gAtoms);

}

fprintf (stdout, "\n\n");

newPenalty = CalcTotP(ldYesPrint);
CalcTorsion();
CalcResPT();

fprintf (stdout, "Residue Bond Orient Angle Direct\n");
fprintf (stdout, "------- —;-m emmmmmoe e e \n");
CalcOri (“N-H", totalCalc, ldYesPrint);

fprintf (stdout, "\n"});

CalcOri("C-0", totalCalc, ldYesPrint);

if(gOriFlag)
fclose(gOriFile);

fprintf (stdout, "\n"};

CalcDeltaR() ;

fprintf (stdout, "\n");

fflush(stdout);

return(l);

259

}

#undef MAIN
#undef 1ldNoPrint
#undef ldYesPrint

/*

File Transpose.c
Transposes a 3x3 matrix.
*/

#include "Torc.h"

void Transpose (double matrixIn[3]{3],
double matrixOut([3][3])
{

int row, col;

for(row = X; row <= Z; ++row)
for(col = X; col <= Z; ++col)
matrixout [col] [row] = matrixIn([row] [coll;

}

/*

File Vectorize.c

Creates a vector from two atoms.
*/

#include "Torc.h"
void Vectorize (double atoml(3],

double atom2(3],
double vector[3])

vector[X] = atom2([X] - atoml([X];
vector[Y] = atom2[Y] - atoml([Y];
vector[Z] = atom2([Z] - atoml[Z];

A.4.3.2 TORC Makefile. The following Makefile is used to compile the
TORC code into a stand alone program. It has been designed to compile on

a Silicon Graphics 4xR8000 Power Challenge, but should work on other

platforms with minor modification.

CFLAGS=-02 -mips4 -align64 -DNORMTORC -woff all
LIBNAME=torc64

EXENAME=torc64.exe

LDFLAGS=~-1m

LIB=../lib

.C.

a :

$(CC) $(CFLAGS) =-c $<

ar rv $@ $*.o
/bin/rm -f $*.0
@echo " *

OBJS = \

$(LIB)/$ (LIBNAME)
$(LIB)/$(LIBNAME)
$(LIB)/$(LIBNAME)
$(LIB) /$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$(LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$ (LIB) /$ (LIBNAME)
$ (LIB) /$ (LIBNAME)
$(LIB) /% (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB) /$(LIBNAME)
$ (LIB) /$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB) /$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB) /$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB) /$ (LIBNAME)

$(LIB)/$ (LIBNAME)
$(LIB) /4% (LIBNAME)
$(LIB) /$(LIBNAME)
$(LIB)/$ (LIBNAME)

.a{CalcCCSP.0) \
.a(CalcCDP.o) \
.a{CalcbeltaR.o) \
.a(CalcDisP.o) \
.a(CalcIiCsp.o) \
.a{CalcIHP.o) \
.a{CalcNCP.o} \
.a{CalcNCSP.o) \
.a{CalcNHP.o) \
.a{CalcNorm.o) \
.a(CalcOri.o} \
.a{CalcPenalty.o) \
.a{CalcResPT.o) \
.a{CalcTheta.o) \
.a{CalcTorangle.o) \
.a({CalcTorsion.o) \
.a(CalcTotP.o) \
.a{CopyCoord.o) \
.a(CopyXYZ.o) \
.a(Declarray.o) \
.a(DoRotation.o) \
.a(DotProd.o) \
.a(BulerMatrix.o) \
.a(Findatom.o) \
.a(GaussRand.o) \
.a({GetMag.o) \
.a({MF_LF.0) \
.a(MakeXYZarray.o) \
.a(MatMult.o) \
.a(Metropolis.o) \
.a{MotavgTensor.o) \
.a(MoveAtoms.o) \
.a{MoveCompensate.o) \
$(LIB)/$ (LIBNAME) .
.a(Normalize.o) \
.a(OutputPDB.o) \
.a(PAS_MF.o) \
.a(PrintHelp.o) \

a(MoveTunnel.o) \

261

$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$ (LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)
$(LIB)/$ (LIBNAME)

$ (EXENAME) : $(OBJS)

$(OBJS)

@echo "Linking"

${CC} ${CFLAGS} -o $(EXENAME) ${LIB)/$(LIBNAME).a ${LDFLAGS}

@echo " *

.a(ReadCDData.o) \
.a{ReadCData.o) \
.a(ReadContFile.o) \
.a(ReadDisFile.o) \
.a(ReadFiles.o) \
.a(ReadIData.o) \
.a(ReadIHData.o) \
.a(ReadLamFile.o) \
.a{ReadLimFile.o) \
.a{ReadNCData.o) \
.a(ReadNData.o} \
.a(ReadNHData.o) \
.a(ReadPDBFile.o) \
.a(RotateAtoms.o) \
.a(Torc.o) \
.a(Transpose.o) \
.a(Vectorize.o)

@echo "Succesfully Completed make"
@echo "executable is "${EXENAME)

: Torc.h

A.4.3.3 TORC/CHARMM sample input file. The following inout file is
used to load the necessary parameters and start the refinement within

CHARMM.

* file atoml.inp

*

'read topology

open read card unit 10 name top_all22_prot.inp.hbond
read rtf card unit 10

close unit 10

'read parameters

open read card unit 10 name par_all22_prot.inp.hbond
read param card unit 10

close unit 10

read sequence card
* channel 1
*
17
CHO VAL GLY ALA LEU ALA VAL VAL VAL TRP LEU TRP LEU TRP LEU TRP E2M
generate MONO first none last none setup

read imag card

* IMAGE FILE FOR THE GRAMICIDIN DIMER
* (Z AXIS ROTATION)

*

image XROT

ROTATE 1.0 0.0 0.0 180.0

END

open read card unit 10 name "ATOMl/coord.in.pdb"
read coor pdb unit 10
close unit 10

! Impose channel axis along z

MMEP

geo cylinder zdir 1.0 RCM force 100.0 select all end

END

{Electrostatics with a dielectric constant eps=1

update inbfrq o
ctonnb 8.0 ctofnb 10.0 cutnb 11.0 cutim 11.0 wmin 0.5 -
elec switch group cdie eps 1.0 -
vdw vswitch vgroup

tdeclare the 6 monomer-monomer hbonds

IMPATCH HBOH PRIM MONO 2 XROT MONO 6 setup
IMPATCH HBOH PRIM MONO 4 XROT MONO 4 setup
IMPATCH HBOH PRIM MONO 6 XROT MONO 2 setup

IMPATCH HBHO PRIM MONO 2 XROT MONO 6 setup
IMPATCH HBHO PRIM MONO 4 XROT MONO 4 setup
IMPATCH HBHO PRIM MONO 6 XROT MONO 2 setup

update
energy

!start the TOtal Refinement of Constraints

TORC TDIR ATOM1

cpen read card unit 10 name "ATOML/coord.out.pdb"

read coor pdb unit 10
close unit 10
energy

stop

REFERENCES

Abragam, A. (1961). Principles of Nuclear Magnetism. New York, Oxford
University Press.

Akashi, K., Kubota, K. and Kurahashi, K. (1977). “Biosynthesis of enzyme-
bound formylvaline and formylvalylglycine. A possible initiation

complex for gramicidin A biosynthesis.” Journal of Biochemistry
81(1): 269-72.

Akashi, K. and Kurahashi, K. (1977). “Formylation of enzyme-bound valine
and stepwise elongation of intermediate peptides of gramicidin A by a

cell-free enzyme system.” Biochemical and Biophysical Research
Communications 77(1): 259-67.

Altman, R. B. and Jardetzky, O. (1989). “Heuristic refinement method for
determination of solution structure of proteins from nuclear
magnetic resonance data.” Meth. Enzymol. 177: 218-246.

Bamberg, E. and Lauger, P. (1987). “Blocking of the gramicidin channel by
divalent cations.” J. Membr. Biol. 35: 351-375.

Braun, W. (1987). “Distance geometry and related methods for protein
structure determination from NMR data.” Quart. Rev. Biophys. 19:
115-157.

Brenneman, M., Quine, J. and Cross, T. A. (unpublished results). .

Brenneman, M. T. and Cross, T. A. (1990). “A Novel Method for the
Analytical Determination of Protein Structure Using Solid State

NMR: the “Metric Method”.” Journal of Chemical Physics 92: 1483-
1494,

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan,
S. and Karplus, M. (1983). “CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations.”

Journal of Computational Chemistry 4: 187-217.

Briinger, A. T., Clore, G. M., Gronenborn, A. M. and Karplus, M. (1986).
“Three-dimensional structure of proteins determined by molecular
dynamics with interproton distance restraints: application to
crambin.” Proc. Natl. Acad. Sci. USA 83: 3801-3805.

265

Briinger, A. T. and Karplus, M. (1991). “Molecular dynamics simulations
with experimental restraints.” Acc. Chem. Res. 24: 54-61.

Bystrov, V. F., Arseniev, A. S., Barsukov, I. L. and Lomize, A. L. (1987).
“2D NMR of single and double stranded helices of gramicidin A in
micelles and solutions.” Bull. Mag. Resonance 8: 84-94.

.Case, D. A. and Wright, P. E. (1993). Determination of high-resolution
NMR structures of proteins. NMR of Proteins: 53-91.

Clore, G. M. and Gronenborn, A. M. (1989). “Determination of the three-
dimensional structures of proteins and nucleic acids in solution by
nuclear magnetic resonance spectroscopy.” CRC Crit. Rev. Biochem.
Mol. Biol. 24: 479-564.

Clore, G. M. and Gronenborn, A. M. (1991). “Applications of three- and
four-dimensional heteronuclear NMR spectroscopy to protein
structure determination.” Prog. NMR Spectrosc. 23: 43-92.

Clore, G. M., Gronenborn, A. M., Briinger, A. T. and Karplus, M. (1985).
“Solution conformation of a heptadecapeptide comprising the DNA
binding helix F of the Cyclic AMP receptor protein of Escherichia

coli. Combined use of 'H nuclear magnetic resonance and restrained
molecular dynamics.” J. Mol. Biol. 186: 435-455.

Cross, T. A., Ketchem, R. R., Hu, W., Lee, K.-C., Lazo, N. D. and North, C.
L. (1992). “Structure and Dynamics of a Membrane Bound

Polypeptide.” Bulletin of Magnetic Resonance 14: 96-101.

Cross, T. A. and Opella, S. J. (1983). “Protein Structure by Solid State
NMR.” Journal of the American Chemical Society 105: 306-308.

Engh, R. A. and Huber, R. (1991). “Accurate bond and angle parameters for
x-ray protein structure refinement.” Acta Cryst. A47: 392-400.

Fields, C. G., Fields, G. B., Noble, R. L. and Cross, T. A. (1989). “Solid
phase peptide synthesis of 15N-gramicidins A, B, and C and high
performance liquid chromatographic purification.” International
Journal of Peptide and Protein Research 33(4): 298-303.

Fields, G. B., Fields, C. G., Petefish, J., Van Wart, H. E. and Cross, T. A.
(1988). “Solid-phase peptide synthesis and solid-state NMR
spectroscopy of [Ala3-15N][Vall]gramicidin A.” Proceedings of the

National Academy of Sciences of the United States of America 85(5):
1384-8.

Fletterick, R. J., Tsai, C.-C. and Hughes, R. E. (1971). “The crystal and
molecular structure of L-alanine-L-alanine.” J. Phys. Chem. 75: 918-
922,

Fuller, G. H. (1976). J. Phys. Chem. Ref, Data 5: 835.

Gippert, G. P., Yip, P. F., Wright, P. E. and Case, D. A. (1990).
“Computational methods for determining protein structures from
NMR data.” Biochem. Pharmacol. 40: 15-22.

Griffiths, J. M. and Griffin, R. G. (1993). “Nuclear Magnetic Resonance
Methods for Measuring Dipolar Couplings in Rotating Solids.” Anal
Chim Acta 283: 1081-1101.

Gullion, T. and Schaefer, J. (1989). “Rotational-Echo Double-Resonance
NMR.” Journal of Magnetic Resonance 81: 196-200.

Hahn, E. L. (1950). “Spin Echoes.” Phys. Rev. 80: 580-594.

Harold, F. M. and Baarada, J. R. (1967). “Gramicidin, valinomycin, and
cation permeability of Stretococcus faecalis.” J. Bact. 94: 53-60.

Hartmann, S. R. and Hahn, E. L. (1962). “Nuclear double resonance in the
rotating frame.” Phys. Rev. 128: 2042-2053.

Havel, T. F. (1991). “An evaluation of computational strategies for use in the
determination of protein structure from distance constraints
obtained by nuclear magnetic resonance.” Prog. Biophys. Mol. Biol.
56: 43-78.

Havel, T. F. and Wiithrich, K. (1985). “An evaluation of the combined use of
nuclear magnetic resonance and distance geometry for the
determination of protein conformations in solution.” J. Mol. Biol. 182:
281-294.

Hotchkiss, R. D. (1944). “Gramicidin, tyrocidin and tyrothricin.” Advan.
Enzymol. 4: 153-199.

Hu, W., Lee, K. C. and Cross, T. A. (1993). “Tryptophans in membrane
proteins: indole ring orientations and functional implications in the
gramicidin channel.” Biochemistry 32(27): 7035-47.

Jeffrey, G. A. and Saenger, W. (1994). Hydrogen bonding in biological
structures, Springer-Verlag.

Jordan, P. C. (1987). “Microscopic approaches to ion transport through
transmembrane channels: the model system gramicidin.” J. Phys.
Chem. 91: 6582-6591.

267

Katsaras, J., Prosser, R. S., Stinson, R. H. and Davis, J. H. (1992).
“Constant helical pitch of the gramicidin channel in phospholipid
bilayers.” Biophysical Journal 61(3): 827-30.

Katz, E. and Demain, A. L. (1977). “The peptide antibiotics of Bacillus:
chemistry, biogenesis, and possible functions.” Bacteriol. Rev. 41:
449-474.

Ketchem, R. R., Hu, W. and Cross, T. A. (1993). “High-resolution
conformation of gramicidin A in a lipid bilayer by solid-state NMR.”
Science 261(5127): 1457-60.

Killian, J. A., Nicholson, L. K. and Cross, T. A. (1988). “Solid-state 1°N-
NMR evidence that gramicidin A can adopt two different backbone
conformations in dimyristoylphosphatidylcholine model membrane
preparations.” Biochimica et Biophysica Acta 943(3): 535-40.

Kirkpatrick, S., Gelatt Jr., C. D. and Vecchi, M. P. (1983). “Optimization by
simulated annealing.” Science 220: 671-680.

Kurahashi, K. (1981). “Biosynthesis of peptide antibiotics.” Antibiotics 4:
325-352.

Kvick, A., Al-Karaghouli, A. R. and Koetzle, T. F. (1977). “Deformation

electron density of a-glycylglycine at 82K. 1. The neutron diffraction
study.” Acta Crystallogr. sect. B 83: 3796-3801.

Langs, D. A., Smith, G. D., Courseille, C., Precigoux, G. and Hospital, M.
(1991). “Monoclinic uncomplexed double-stranded, antiparallel, left-
handed beta 5.6-helix (increases decreases beta 5.6) structure of
gramicidin A: alternate patterns of helical association and

deformation.” Proceedings of the National Academy of Sciences of the
United States of America 88(12): 5345-9.

Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M.
(1993). “PROCHECK: a program to check the stereochemical quality

of.” Journal of Applied Crystallography 26: 283-291.

Lazo, N. D., Hu, W. and Cross, T. A. (1995). “Low-temperature solid-state
15N NMR characterization of polypeptide backbone librations.”
Journal of Magnetic Resonance. Series B 107(1): 43-50.

Lazo, N. D., Hu, W, Lee, K. C. and Cross, T. A. (1993). “Rapidly-frozen
polypeptide samples for characterization of high definition dynamics
by solid-state NMR spectroscopy.” Biochemical and Biophysical
Research Communications 197(2): 904-9.

Lee, K. C. and Cross, T. A. (1994). “Side-chain structure and dynamics at
the lipid-protein interface: Val, of the gramicidin A channel.”

Biophysical Journal 66(5): 1380-7.

Lee, K. C., Huo, S. and Cross, T. A. (1995). “Lipid-peptide interface: valine
conformation and dynamics in the gramicidin channel.”
Biochemistry 34(3): 857-67.

Lipmann, F. (1980). “Bacterial production of antibiotic polypeptides by thiol-
linked synthesis on protein templates.” Adv. Microb. Physiol. 21: 227-
266.

Logan, T. M., Zhou, M.-M., Nettesheim, D. G., Meadows, R. P., Van Etten,
R. L. and Fesik, S. W. (1994). “Solution structure of a low molecular
weight protein tyrosine phosphatase.” Biochemistry 33: 11087-11096.

LoGrasso, P. V., Moll, F. d. and Cross, T. A. (1988). “Solvent history
dependence of gramicidin A conformations in hydrated lipid
bilayers.” Biophysical Journal 54(2): 259-67.

LoGrasso, P. V., Nicholson, L. K. and Cross, T. A. (1989). “N-H bond length
determination and implications for the gramicidin channel

conformation and dynamics from 1°N-1H dipolar interactions.” dJ.
Amer. Chem. Soc. 111: 1910-1912.

Lomize, A. L., Orekhov, V. and Arseniev, A. S. (1992). “Utochnenie
prostranstvennoi struktury ionnogo kanala gramitsidina A.
[Refinement of the spatial structure of the gramicidin A ion
channel].” Bioorganicheskaia Khimiia 18(2): 182-200.

Mackerell, A. D. J., Bashford, D., Bellot, M., Dunbrack, R. L., Field, M. J.,
Fischer, S., J., G., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera,
K., Lau, F. T. K., Mattos, C., Michnick, S., Nguyen, D. T., Ngo, T.,
Prodhom, B., Roux, B., Schlenkrich, B., et al. (1992). “Self-Consistent
Parameterization of Biomolecules for Molecular Modeling and
Condensed Phase Simulations.” Biophys. J. 61: A143.

Mai, W., Hu, W., Wang, C. and Cross, T. A. (1993). “Orientational
constraints as three-dimensional structural constraints from
chemical shift anisotropy: the polypeptide backbone of gramicidin A
in a lipid bilayer.” Protein Science 2(4): 532-42.

Mandl, J. and Paulus, H. (1985). “Effect of linear gramicidin on sporulation
“and intracellular ATP pools of Bacillus brevis.” Archives of
Microbiology 143(3): 248-52.

Mehring, M. (1983). High resolution spectroscopy in solids.

269

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and
Teller, E. (1953). “Equation of state calculations by fast computing
machines.” J. Chem. Phys. 21: 1087-1092.

Moll, F. and Cross, T. A. (1990). “Optimizing and characterizing alignment
of oriented lipid bilayers containing gramicidin D.” Biophysical
Journal §7(2): 351-62.

Momany, F. A., McGuir, R. F., Burgess, A. W. and Scheraga, H. A. (1975).
“Energy parameters in polypeptides. VII. Geometric parameters,
partial atomic charges, nonbonded interactions, hydrogen bond
interactions, and intrinsic torsional potentials for the naturally
occurring amino acids.” J. Phys. Chem. 79: 2361-2378.

Nicholson, L. K. and Cross, T. A. (1989). “Gramicidin cation channel: an
experimental determination of the right-handed helix sense and
verification of beta-type hydrogen bonding.” Biochemistry 28(24): 9379-
85.

Nicholson, L. K., Moll, F., Mixon, T. E., LoGrasso, P. V., Lay, J. C. and

Cross, T. A. (1987). “Solid-state 1°N NMR of oriented lipid bilayer
bound gramicidin A’.” Biochemistry 26(21): 6621-6.

Nicholson, L. K., Teng, Q. and Cross, T. A. (1991). “Solid-state nuclear
magnetic resonance derived model for dynamics in the polypeptide
backbone of the gramicidin A channel.” Journal of Molecular Biology
218(3): 621-37.

North, C. L. (1993). Peptide backbone librations of the gramicidin A
transmembrane channel as measured by solid state nuclear
magnetic resonance. Implications for proposed mechanisms of ion
transport. Institute of Molecular Biophysics. Tallahassee, The
Florida State University.

North, C. L. and Cross, T. A. (1993). “Analysis of Polypeptide Backbone T,

Relaxation Data Using an Experimentally Derived Model.” Journal of
Magnetic Resonance 101B: 35-43.

North, C. L. and Cross, T. A. (1995). “Correlations Between Function and
Dynamics: Timescale Coincidence for Ion Translocation and
Molecular Dynamics in the Gramicidin Channel Backbone.”
Biochemistry 34: 5883-5895.

Opella, S. J., Stewart, P. L. and Valentine, K. G. (1987). “Protein structure
by solid state NMR spectroscopy.” Q. Rev. Biophys. 19: 7-49.

Pascal, S. M. and Cross, T. A. (1992). “Structure of an isolated gramicidin
A double helical species by high-resolution nuclear magnetic
resonance.” Journal of Molecular Biology 226(4): 1101-9.

270

Pascal, S. M. and Cross, T. A. (1993). “High-resolution structure and
dynamic implications for a double-helical gramicidin A conformer.”
Journal of Biomolecular NMR 3(5): 495-513.

Peticolas, W. L. and Kurtz, B. (1980). “Transformation of the ¢-y plot for
proteins to a new representation with local helicity and peptide
torsional angles as variables.” Biopolymers 19: 1153-1166.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992).
Numerical Recipes in C, Cambridge University Press.

Prosser, R. S., Davis, J. H., Dahlquist, F. W. and Lindorfer, M. A. (1991).

“2H nuclear magnetic resonance of the gramicidin A backbone in a
phospholipid bilayer.” Biochemistry 30(19): 4687-96.

Ramachandran, G. N. and Sassiekharan, V. (1968). “Conformation of
polypeptides and proteins.” Adv. Prot. Chem. 28: 283-437.

Roux, B. and Karplus, M. (1991a). “Ion transport in a gramicidin-like
channel: dynamics and mobility.” J. Phys. Chem. 95: 4856-4868.

Roux, B. and Karplus, M. (1991b). “Ion transport in a model gramicidin
channel. Structure and thermodynamics.” Biophysical Journal 59(5):
961-81.

Sanders, J. K. M. and Hunter, B. K. (1993). Modern NMR Spectroscopy A
Guide for Chemists. New York, Oxford University Press.

Sarges, R. and Witkop, B. (1965). “Gramicidin A. V. The structure of valine-
and isoleucine-gramicidin A.” Journal of the American Chemical
Society 87: 2011-2020.

Sillescu, H. (1982). “Recent advances of 2H NMR for studying molecules in
solid polymers.” Pure & Appl. Chem. 54: 619.

Slichter, C. P. (1990). Principles of Magnetic Resonance. New York,
Springer-Verlag.

Smith, S. O. (1993). “Magic Angle Spinning NMR Methods for Internuclear
Distance Measurements.” Curr. Opin. Struct. Biol. 3: 755-759.

Spiess, H. W. (1983). “Molecular dynamics of solid polymers as revealed by
deuteron NMR.” Coll. & Polymer. Sci. 261: 193-209.

Spiess, H. W. (1985). Deuteron NMR - a new tool for studying chain mobility
and orientation in polymers. Adv. Polym. Sci. Vol. 66. New York,
Springer-Verlag: 23-58.

271

Teng, Q., Igbal, M. and Cross, T. A. (1992). “Determination of the 13C

Chemical Shift and 14N Electric Field Gradient Tensor Orientations
With Respect to the Molecular Frame in a Polypeptide.” Journal of
the American Chemical Society 114: 5312-5321.

Teng, Q., Nicholson, L. K. and Cross, T. A. (1991). “Experimental
determination of torsion angles in the polypeptide backbone of the
gramicidin A channel by solid state nuclear magnetic resonance.”

Journal of Molecular Biology 218(3): 607-19.

Urry, D. W. (197‘1). “The gramicidin A transmembrane channel: a proposed

H(L D) helix.” Proceedings of the National Academy of Sciences USA
68: 672-676.

Wallace, B. A. and Janes, R. W. (1991). “Co-crystals of gramicidin A and
phospholipid. A system for studying the structure of a
transmembrane channel.” Journal of Molecular Biology 217(4): 625-7.

Wallace, B. A. and Ravikumar, K. (1988). “The gramicidin pore: crystal
structure of a cesium complex.” Science 241: 182-187.

Waugh, J. S. (1976). “Uncoupling of local field spectra in nuclear magnetic
resonance: determination of atomic positions in solids.” Proceedings

of the National Academy of Sciences of the United States of America
73(5): 1394-7.

Weinstein, S., Wallace, B. A., Morrow, J. S. and Veatch, W. R. (1980).
“Conformation of the gramicidin A transmembrane channel: A 13C
nuclear magnetic resonance study of 13C-enriched gramicidin in
phosphatidylcholine vesicles.” Journal of Molecular Biology 143(1): 1-
19.

Wiithrich, K. (1989). “Protein structure determination in solution by
nuclear magnetic resonance spectroscopy.” Science 243: 45-50.

272

BIOGRAPHICAL SKETCH

Randal R. Ketchem was born on July 26, 1965, in Spokane,
Washington to Fred and Shareen Ketchem. He then moved to Montana,
Idaho, South Carolina, the country of Panama, Florida, Georgia and back
to Florida where he has lived ever since. He completed a B.S. in
Chemistry/Biochemistry at the University of West Florida (where he also
met his wife, Paula Ketchem) the Summer of 1989. The following Fall he
began his Ph.D. in Molecular Biophysics at the Florida State University.

273

