

US 20110150888A1

(19) United States

(12) Patent Application Publication Foltz et al.

(10) Pub. No.: US 2011/0150888 A1

(43) **Pub. Date:** Jun. 23, 2011

(54) ANTI-HEPCIDIN ANTIBODIES AND METHODS OF USE

(75) Inventors: Ian Foltz, Burnaby (CA); Michael

Gallo, North Vancouver (CA); Keegan Cooke, Ventura, CA (US); Randal R. Ketchem, Snohomish, WA (US); Christopher Mehlin,

Seattle, WA (US)

(73) Assignee: AMGEN INC., Thousand Oaks,

CA (US)

(21) Appl. No.: 12/990,137

(22) PCT Filed: Apr. 28, 2009

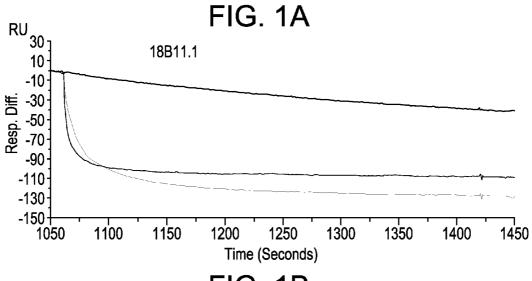
(86) PCT No.: **PCT/US2009/002606**

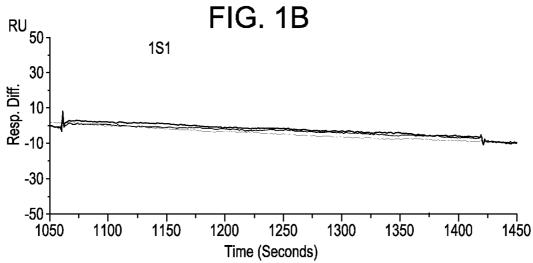
§ 371 (c)(1),

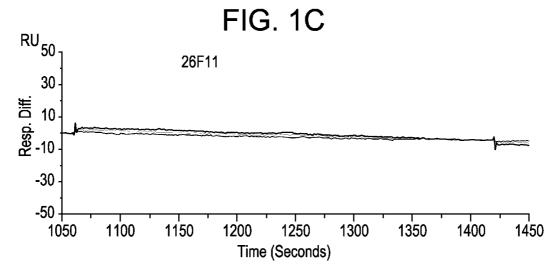
(2), (4) Date: Feb. 11, 2011

Related U.S. Application Data

(60) Provisional application No. 61/049,687, filed on May 1 2008


Publication Classification


51)	Int. Cl.	
	A61K 39/395	(2006.01)
	C12P 21/04	(2006.01)
	C12N 5/10	(2006.01)
	C12N 15/63	(2006.01)
	C07K 16/18	(2006.01)
	C07H 21/04	(2006.01)
	A61P 29/00	(2006.01)
	A61P 7/06	(2006.01)
	A61P 35/00	(2006.01)
	A61P 9/00	(2006.01)
50)	TIC CI	424H20 1, 425/CO C. 425


(52) **U.S. Cl.** **424/139.1**; 435/69.6; 435/325; 435/320.1; 530/387.9; 536/23.53

(57) ABSTRACT

The invention relates to monoclonal antibodies that bind hepcidin and methods of making and using such antibodies. Also provided are methods of treating hepcidin-related disorders.

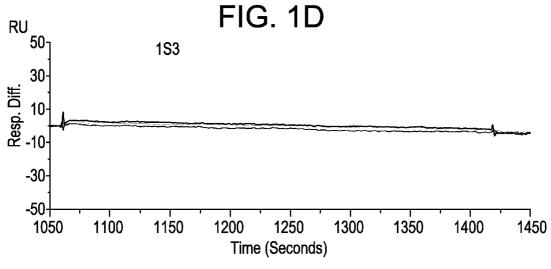


FIG. 1E

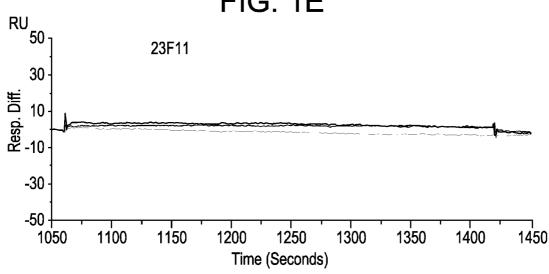


FIG. 1F

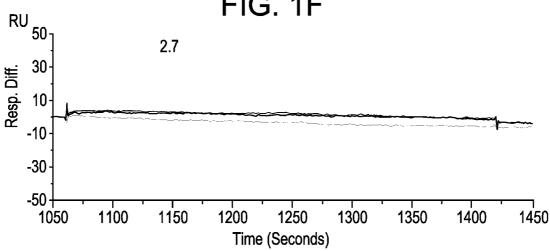
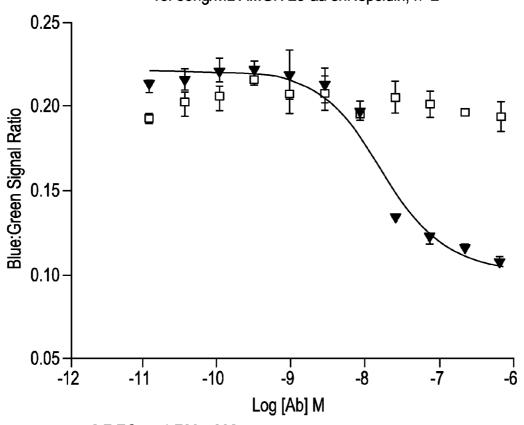
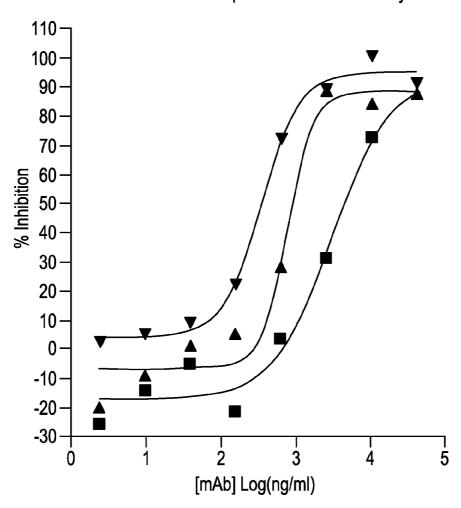



FIG. 2

BLA-Comparison of anti-Hepcidin mAb 2.7
vs. 50ng/mL AMGN 25-aa shHepcidin, n=2



▼ 2.7 EC50: 1.700e-008

□ lgG

FIG. 3

Anti-Hepcidin mAb dose response on human HepC
-293/fpn/bla iron release assay

- 18B11.1
- ▲ 24E4.1
- **▼** 23F11

FIG. 4A

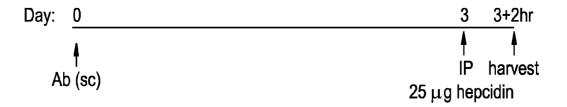


FIG. 4B

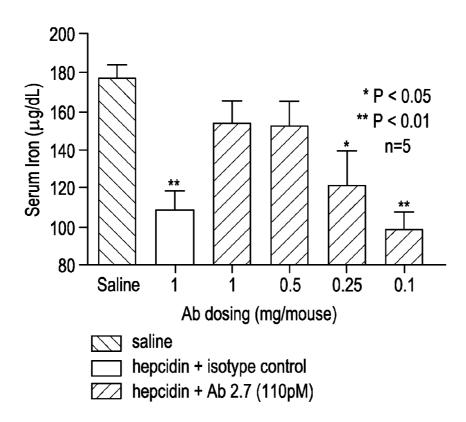
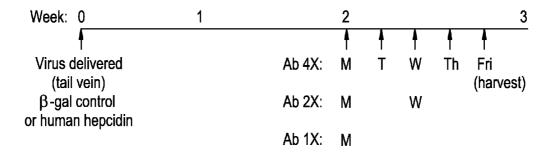



FIG. 5A

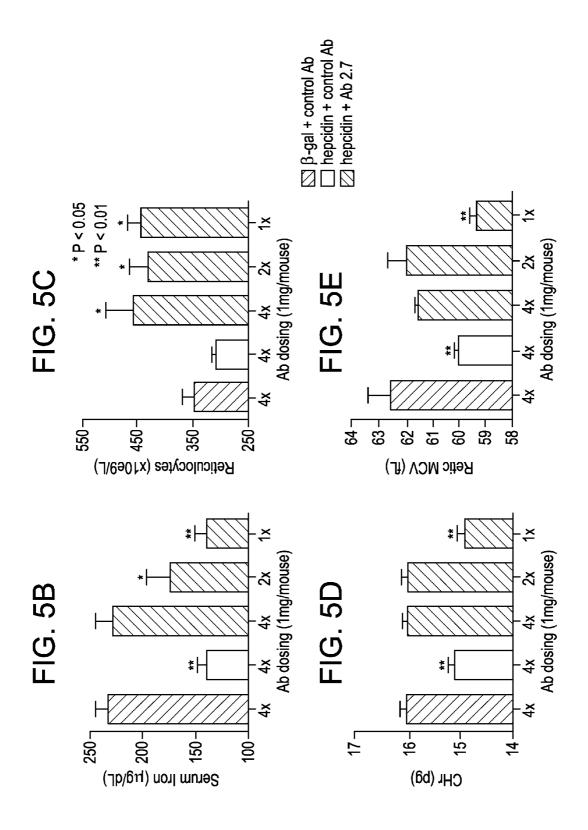


FIG. 6A

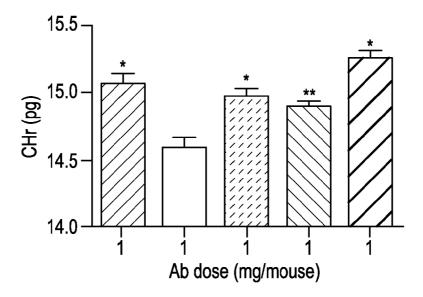
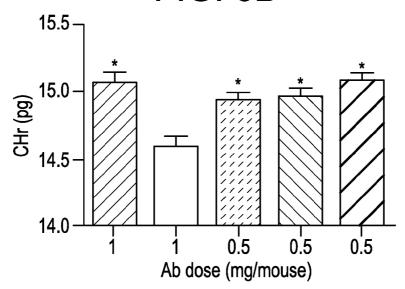
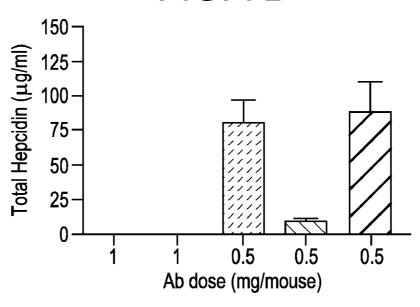



FIG. 6B



- AAV-GFP + isotype
- AAV-hHepc + Ab 1S1
- AAV-hHepc + Ab18B11
- AAV-hHepc + Ab 24E4

FIG. 7A

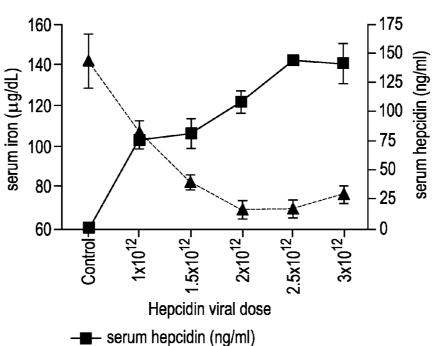


FIG. 7B

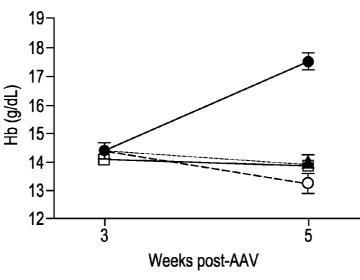

- AAV-hHepc + Ab1S1
- AAV-hHepc + Ab18B11
- AAV-hHepc + Ab 24E4

FIG. 8

- --▲-- serum iron (µg/dL)

FIG. 9

- --▲-- GFP + saline
- GFP + Aranesp <</p>
- --O-- hHepc + saline --□- hHepc + Aranesp®

FIG.10A

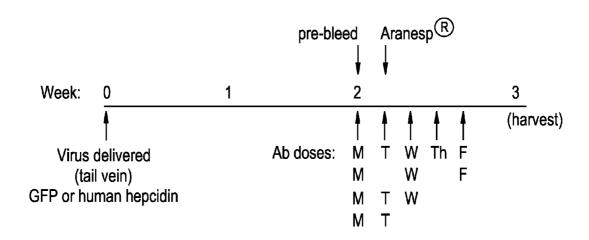


FIG. 10B

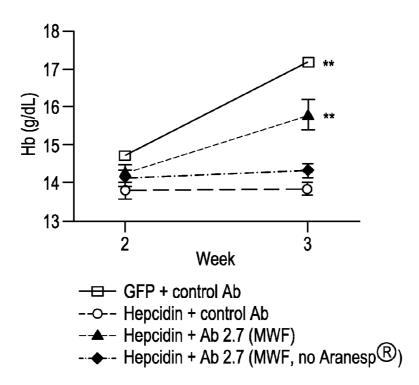


FIG. 10C

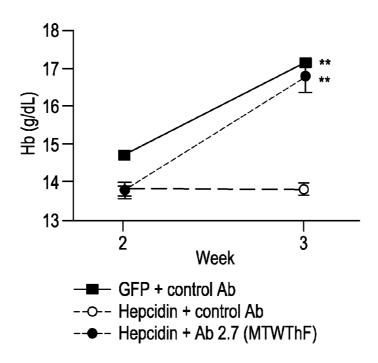
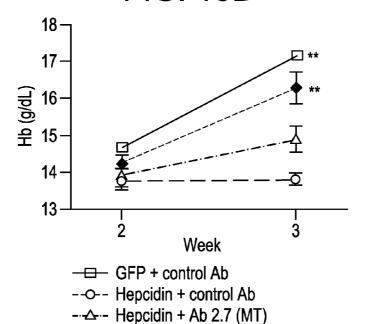
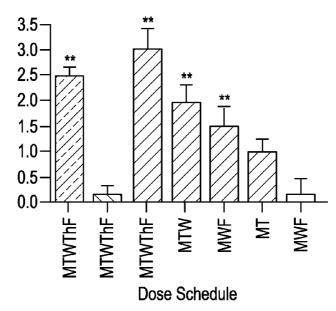




FIG. 10D

FIG. 10E

-
- Hepcidin + Ab 2.7 (MTW)

GFP + control Ab

Hepcidin + control Ab

Hepcidin + Ab 2.7

Hepcidin + Ab 2.7 no Aranesp®

FIG. 11A

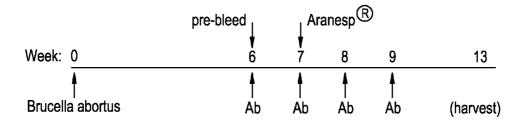


FIG. 11B

FIG. 11C

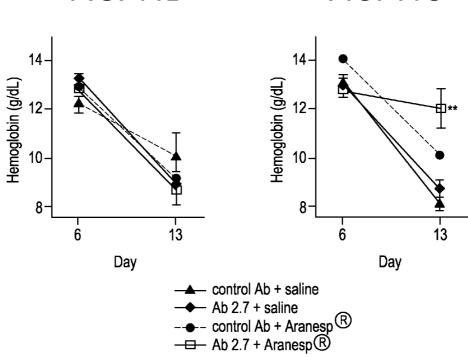


FIG. 12

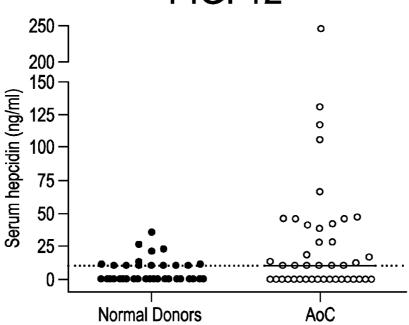
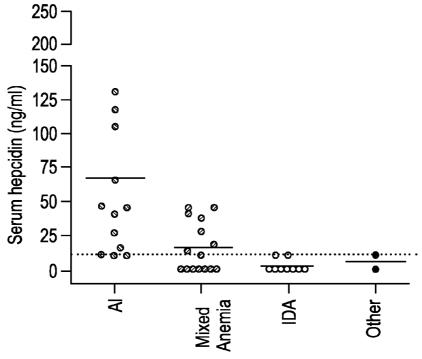
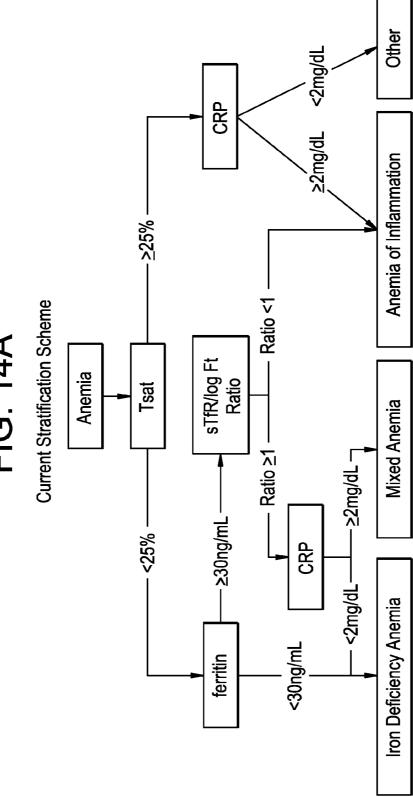




FIG. 13

Breakdown of AoC diagnoses

FIG. 14A

Proposed Stratification Scheme FIG. 14B Anemia

Mixed Anemia Ratio ≥1 – sTfR/log Ft Ratio Ratio<1 — Anemia of Inflammation -≥10ng/ml Hepcidin Iron Deficiency Anemia – Ratio ≥1 – sTfR/log Ft Ratio Ratio<1 □ Other

FIG. 15A

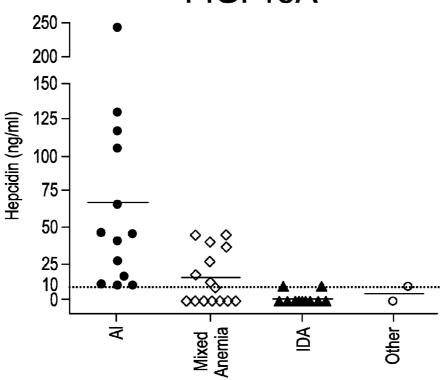


FIG. 15B

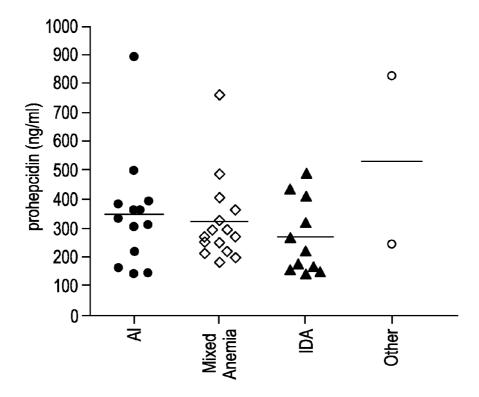
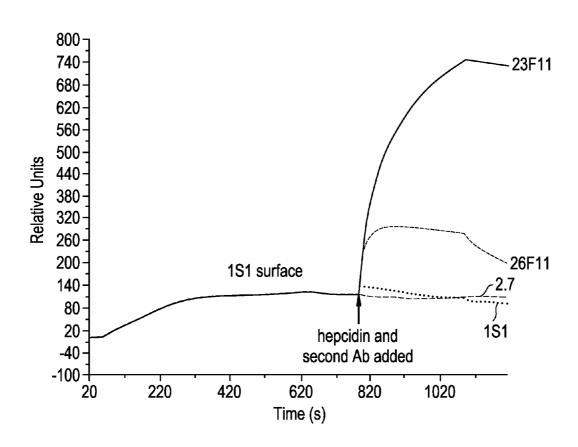



FIG. 16

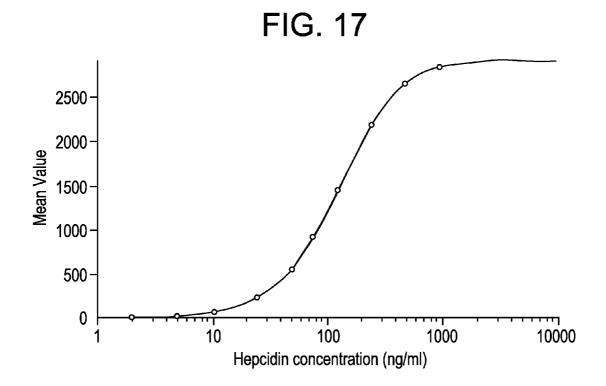
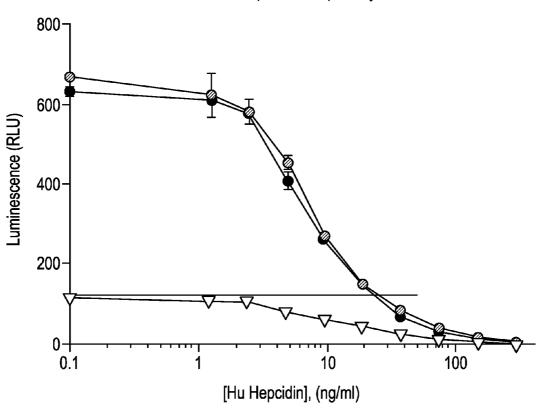
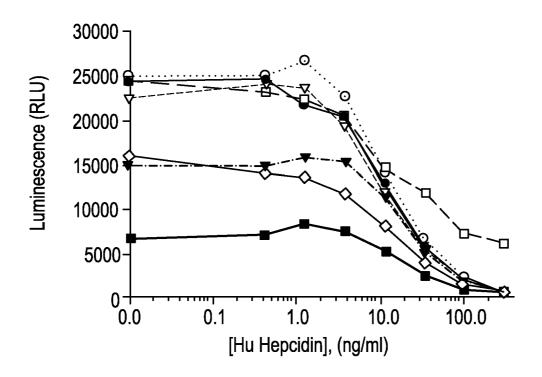




FIG. 18
Human Hepcidin Comp assay

- Stads in Rabbit serum
- ── Stads in 5% BSA: 1-block
- ── Stads in Pool Hu Serum

FIG. 19
Hepcidin Assay; Hu Sera

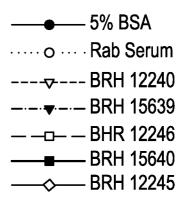


FIG. 20

Hepcidin level in 24 unknown Human Sera samples tested in this Competitive assay

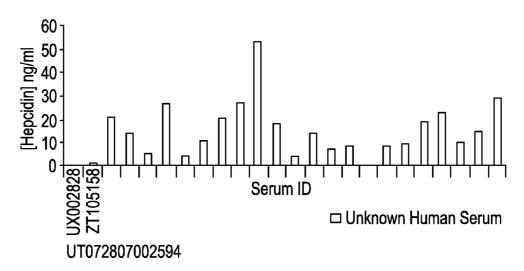


FIG. 21 **Serum Antibody Concentration** 1500.00 -1200.00 Ab conc. (ug/ml) 900.00 600.00 300.00 0.00 50 100 150 200 250 300 350 0 Time post administration (hr)

→ 18B11 (2mg) & Hep (3.72ug) N=3 → 1S1 (2mg) & Hep (3.72ug) N=3

Serum Hepcidin Concentration

4

3

2

1

0

50

100

150

200

250

300

350

400

Time post administration (hr)

FIG. 22

→ 18B11(2mg) & Hepcidin (3.72ug) N=3

→ 1S1 (2mg) & Hepcidin (3.72ug) N=3

FIG. 23

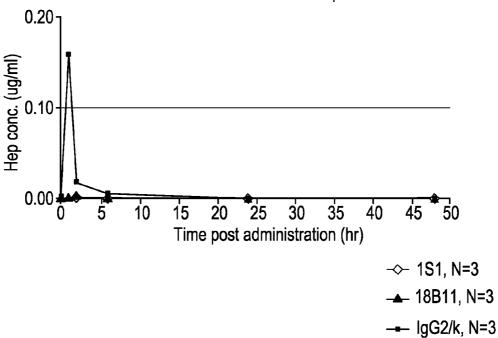


FIG. 24

Sera Abs levels, 21-016 K07

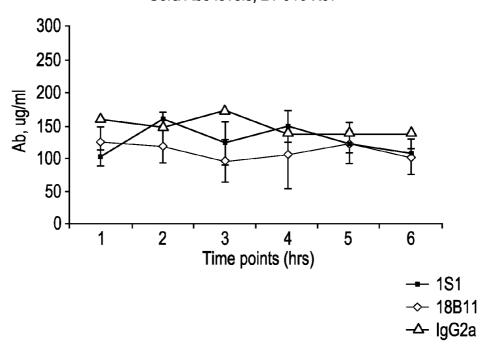


FIG. 25
21-016K07 Serum Total Hepcidin

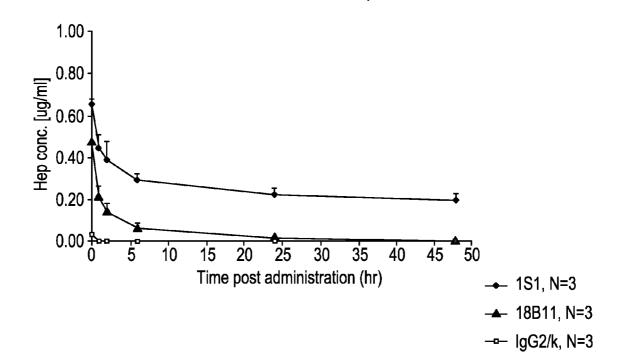
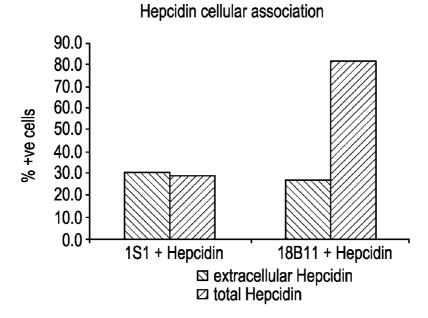



FIG. 26

ANTI-HEPCIDIN ANTIBODIES AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/049,687, filed 1 May 2008, which is hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The invention relates to hepcidin, hepcidin antagonists (including antibodies that bind hepcidin) and their ability to modulate hepcidin activity.

BACKGROUND OF THE INVENTION

[0003] Iron is an essential trace element required for growth and development of all living organisms. Iron content in mammals is regulated by controlling iron absorption, iron recycling, and release of iron from the cells in which it is stored. Iron is absorbed predominantly in the duodenum and upper jejunum by enterocytes. A feedback mechanism exists that enhances iron absorption in individuals who are iron deficient, and that reduces iron absorption in individuals with iron overload (Andrews, Ann. Rev. Genomics Hum. Genet., 1:75 (2000); Philpott, Hepatology, 35:993 (2002); Beutler et al., Drug-Metab. Dispos., 29:495 (2001)). Iron is recycled from degraded red cells by reticuloendothelial macrophages in bone marrow, hepatic Kupffer cells and spleen. Iron release is controlled by ferroportin, a major iron export protein located on the cell surface of enterocytes, macrophages and hepatocytes, the main cells capable of releasing iron into plasma. Hepcidin binds to ferroportin and decreases its functional activity by causing it to be internalized from the cell surface and degraded. (Nemeth et al., Science, 306:2090-3, 2004; De Domenico et al., Mol. Biol. Cell., 18:2569-2578,

[0004] Hepcidin is an important regulator of iron homeostasis (Philpott, Hepatology, 35:993 (2002); Nicolas et al., *Proc. Natl. Acad. Sci. USA*, 99:4396 (2002)). High levels of human hepcidin result in reduced iron levels, and vice versa. Mutations in the hepcidin gene which result in lack of hepcidin activity are associated with juvenile hemochromatosis, a severe iron overload disease (Roetto et al., *Nat. Genet.*, 33:21-22, 2003). Studies in mice have demonstrated a role of hepcidin in control of normal iron homeostasis (Nicolas et al., *Nat. Genet.*, 34:97-101, 2003; Nicolas et al., *Proc. Natl. Acad. Sci. USA*, 99:4596-4601, 2002; Nicolas et al., *Proc. Natl. Acad. Sci. USA*, 98:8780-8785, 2001.).

[0005] In addition, data is accumulating implicating hepcidin in iron sequestration during inflammation (See, e.g., Weinstein et al., *Blood*, 100:3776-36781, 2002; Kemna et al., *Blood*, 106:1864-1866, 2005; Nicolas et al., *J. Clin. Invest.*, 110:1037-1044, 2002; Nemeth et al., *J. Clin. Invest.*, 113: 1271-1276, 2004; Nemeth et al., *Blood*, 101:2461-2463, 2003 and Rivera et al., *Blood*, 105:1797-1802, 2005). Hepcidin gene expression has been observed to be robustly upregulated after inflammatory stimuli, such as infections, which induce the acute phase response of the innate immune systems of vertebrates. In mice, hepcidin gene expression was shown to be upregulated by lipopolysaccharide (LPS), turpentine, Freund's complete adjuvant, and adenoviral infections. Hepcidin expression is induced by the inflammatory cytokine interleukin-6 (IL-6). A strong correlation between

hepcidin expression and anemia of inflammation was also found in patients with chronic inflammatory diseases, including bacterial, fungal, and viral infections.

[0006] Human hepcidin, a 25 amino acid peptide with antimicrobial and iron-regulating activity, was discovered independently by two groups investigating novel anti-microbial peptides. (Krause et al., FEBS Lett., 480:147 (2000); Park et al., J. Biol. Chem., 276:7806 (2001)). It has also been referred to as LEAP-1 (liver-expressed antimicrobial peptide). A hepcidin cDNA encoding an 83 amino acid pre-propeptide in mice and an 84 amino acid pre-propeptide in rat and human were subsequently identified in a search for liver specific genes that were regulated by iron (Pigeon et al., J. Biol. Chem., 276:7811 (2001)). The 24 residue N-terminal signal peptide is first cleaved to produce pro-hepcidin, which is then further processed to produce mature hepcidin, found in both blood and urine. In human urine, the predominant form contains 25 amino acids, although shorter 22 and 20 amino acid peptides are also present.

[0007] The mature peptide is notable for containing eight cysteine residues linked as four disulfide bridges. The structure of hepcidin was studied by Hunter et al., *J. Biol. Chem.*, 277:37597-37603 (2002), by NMR using chemically synthesized hepcidin with an identical HPLC retention time to that of native hepcidin purified from urine. Hunter et al. reported their determination that hepcidin folded into a hairpin loop structure containing a vicinal disulfide bond (C1-C8, C2-C7, C3-C6, C4-C5). See also Lauth et al., *J. Biol. Chem.*, 280: 9272-9282 (2005). However, as discovered and disclosed in copending U.S. patent application Ser. No. 12/022,515, incorporated by reference herein in its entirety, the structure of hepcidin was determined to have a disulfide bond connectivity different than noted above.

[0008] U.S. Patent Application Publication Nos. 2003/0187228, 2004/0096987, 2004/0096990, 2005/0148025, 2006/0019339, 2005/0037971 and 2007/0224186; U.S. Pat. Nos. 7,232,892 and 7,294,690 and International Publication No. WO 02/98444 discuss hepcidin antibodies.

SUMMARY OF THE INVENTION

[0009] Various embodiments of the invention provide antibodies, including monoclonal antibodies that specifically bind human hepcidin, methods of producing such antibodies, methods of using such antibodies for detecting hepcidin, pharmaceutical formulations including such antibodies, methods of preparing the pharmaceutical formulations, and methods of treating patients with the pharmaceutical formulations, including combination therapy with erythropoiesis stimulators as described below. Nucleic acids encoding such antibodies, vectors and recombinant host cells comprising such nucleic acids, and methods of producing such antibodies are also provided.

[0010] In some embodiments, an isolated antibody is provided that binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D of less than about 10^{-8} M that exhibits at least one of the properties selected from the group consisting of: (a) at least about a 50-fold higher K_D at a pH of about 5.5 or about 6 compared to its K_D for said hepcidin at a pH of about 7.4; (b) at least about a 5-fold faster clearance of said hepcidin compared to antibody 1S1; and (c) an off rate of about $6 \times 10^{-2} \, \mathrm{s}^{-1}$ or higher at about pH 5.5 or about pH 6. Alternatively, or in addition to one or more of the foregoing properties, the antibody exhibits at least one of the properties selected from the group consisting of: (a) reduces the level of total human

hepcidin in serum by at least about 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg doses of said antibody and (ii) a pre-complexed single dose of 3.7 µg of human hepcidin with a 1 mg dose of said antibody; (b) reduces the level of total human hepcidin in serum in a mouse by at least about 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% about 24 hours after said mouse is administered a single dose of 3.7 µg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody; (c) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and (d) results in at least about a 2-fold higher intracellular accumulation of hepcidin in FcRn transfected HEK293 cells incubated with said antibody compared to antibody 1S1.

[0011] In some embodiments, an isolated antibody is provided that binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D of less than about $10^{-8} \rm M$, wherein said antibody increases circulating iron level or Tsat in a mouse overexpressing human hepcidin for at least 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of antibody.

[0012] In some embodiments, an isolated antibody is provided that binds to human hepcidin of SEQ ID NO: 9, with an affinity K_D of at least $10^{-8} \rm M$, wherein said antibody is obtained by: (a) replacing an amino acid in the heavy or light chain of said antibody with a histidine; (b) screening the antibody obtained in (a) for differential pH binding; (c) replacing another amino acid in the heavy or light chain of said antibody with a histidine; and (d) screening said antibody for having at least one of the properties selected from the group consisting of: (i) at least about 50-1000 fold higher K_D at about pH 5.5 or about pH 6 compared to its K_D for said hepcidin at about pH 7.4; and (ii) an off rate of about $6\times10^{-2} \rm s^{-1}$ or higher at about pH 5.5 or about pH 6.

[0013] In some embodiments, an antibody described herein decreases iron in ferroportin expressing cells stimulated with 50 ng/mL hepcidin at an EC $_{50}$ of about 20 nM or less; and/or increases the level in a subject of one of at least hemoglobin or hematocrit, or both; and/or increases in a subject one of at least the red blood cell count, the red blood cell hemoglobin content or the red blood cell mean cell volume of red blood cell count, or any combinations thereof; and/or increases in a subject one of at least the reticulocyte count, the reticulocyte hemoglobin content or the reticulocyte mean cell volume of reticulocyte count, or any combinations thereof; and/or inhibits the iron-regulating activity of hepcidin.

[0014] In some embodiments, the antibody comprises an amino acid sequence at least 90% identical to SEQ ID NO: 170 or to SEQ ID NO: 168, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 171-176, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 171-176. In one aspect, the antibody comprises SEQ ID NOs: 171-173. In another aspect, the antibody comprises SEQ ID NOs: 174-176.

[0015] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 333 or to SEQ ID NO: 331, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 334-349, and any sequences comprising at least one amino acid change to any

of SEQ ID NOs: 334-349. In one aspect, an antibody described herein comprises SEQ ID NOs: 334-346. In another aspect, an antibody described herein comprises SEQ ID NOs: 347-349.

[0016] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 343 or to SEQ ID NO: 341, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 344-349, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 344-349. In one aspect, an antibody described herein comprises SEQ ID NOs: 344-346. In another aspect, an antibody described herein comprises SEQ ID NOs: 347-349.

[0017] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 353 or to SEQ ID NO: 351, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 354-359, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 354-359. In one aspect, an antibody described herein comprises SEQ ID NOs: 354-356. In another aspect, an antibody described herein comprises SEQ ID NOs: 357-359.

[0018] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 363 or to SEQ ID NO: 361, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 364-369, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 364-369. In one aspect, an antibody described herein comprises SEQ ID NOs: 364-366. In another aspect, an antibody described herein comprises SEQ ID NOs: 367-369.

[0019] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 373 or to SEQ ID NO: 37, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 374-379, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 374-379. In one aspect, an antibody described here comprises SEQ ID NOs: 374-376. In another aspect, an antibody described herein comprises SEQ ID NOs: 377-379.

[0020] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 383 or to SEQ ID NO: 381, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 384-389, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 384-389. In one aspect, an antibody described herein comprises SEQ ID NOs: 384-386. In another aspect, an antibody described herein comprises comprising SEQ ID NOs: 387-389.

[0021] In some embodiments, an antibody described herein comprises an amino acid sequence at least 90% identical to SEQ ID NO: 393 or to SEQ ID NO: 391, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 394-399, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 394-399. In one aspect, an antibody described herein comprises SEQ ID NOs: 394-396. In another aspect, an antibody described herein comprises comprising SEQ ID NOs: 397-399.

[0022] In some embodiments, an antibody described here comprises an amino acid sequence of SEQ ID NO: 170 wherein at least one, two, three or all four of the amino acids at positions 52, 57, 99 and 107 of said amino acid sequence are replaced with a histidine. Such an antibody may further comprise SEQ ID NO: 168. In other embodiments, the antibody comprises an amino acid sequence of SEQ ID NO: 168 wherein at least one or both of the amino acids at positions 27 and 89 of said amino acid sequence are replaced with a histidine. Such an antibody may further comprise SEQ ID NO: 170. Optionally, any of the foregoing modified SEQ ID NO: 170 and any of the foregoing modified SEQ ID NO: 168 may be combined in an antibody. In one embodiment, the amino acids at positions 57 and 107 of SEQ ID NO: 170 are both replaced with a histidine. In another embodiment, the amino acid at position 107 of SEQ ID NO: 170 and the amino acid at position 27 of SEQ ID NO: 168 are both replaced with a histidine. In another embodiment, the amino acid at position 107 of SEQ ID NO: 170 and the amino acid at position 89 of SEQ ID NO: 168 are both replaced with a histidine. In yet another embodiment, the amino acids at positions 99 and 107 of SEQ ID NO: 170 are both replaced with a histidine.

[0023] Any of the foregoing antibodies may be a monoclonal antibody, or a chimeric, humanized, or human antibody. In some embodiments, the antibody is an IgG isotype, such as an IgG1, IgG2, IgG3 or IgG4 isotype.

[0024] In another aspect, embodiments of the invention include an isolated nucleic acid molecule comprising a nucleotide sequence that encodes any of the foregoing antibodies, an expression vector comprising any of the isolated nucleic acid molecules, operably linked to a regulatory control sequence, host cells comprising such isolated nucleic acid molecules or vectors, and methods of using such host cells to produce an antibody. Such production methods comprise culturing the host cell under suitable conditions such that the nucleic acid is expressed to produce the antibody, and optionally recovering the antibody from the host cell or culture medium. In a related embodiment, an isolated antibody or agent produced by the aforementioned method is provided.

[0025] Embodiments described herein include a composition that contains any of the foregoing antibodies, e.g. in a therapeutically effective amount, and a pharmaceutically acceptable carrier, diluent or excipient. In a related aspect, embodiments of the invention include a method of treating a disorder of iron homeostasis in a subject in need thereof by administering any of the foregoing antibodies or compositions, e.g., in a therapeutically effective amount. Exemplary disorders of iron homeostasis include anemia, sepsis, anemia of inflammation, anemia of cancer, chemotherapy induced anemia, chronic inflammatory anemia, congestive heart failure, end stage renal disorder, chronic kidney disease (stage I, II, III, IV or V), iron deficiency anemia, a disorder of iron homeostasis, ferroportin disease, hemochromatosis, diabetes, inflammation, rheumatoid arthritis, arteriosclerosis, tumors, vasculitis, systemic lupus erythematosus, hemoglobinopathies, and red blood cell disorders. In related aspects, embodiments of the invention provide methods of treating a human with an elevated level of hepcidin, or methods of treating a human with anemia, by administering any of the foregoing antibodies or compositions, e.g. in a therapeutically effective amount. Also provided are uses of any of the foregoing antibodies in preparation of a medicament for treating any of the foregoing subjects or conditions.

[0026] It is understood that co-administration methods involving administration of antibodies with a second therapeutic agent, as described herein, encompass not only the use of the antibody in preparation of a medicament for co-administration with the second therapeutic agent, but also the use of the second therapeutic agent in preparation of a medicament for co-administration with the antibody.

[0027] In some embodiments, the mammal is a human suffering from a condition selected from the group consisting of African iron overload, alpha thalassemia, Alzheimer's disease, anemia, anemia of cancer, anemia of chronic disease, anemia of inflammation, arteriosclerosis or atherosclerosis (including coronary artery disease, cerebrovascular disease or peripheral occlusive arterial disease), ataxias, ataxias related to iron, atransferrinemia, cancer, ceruloplasmin deficiency, chemotherapy-induced anemia, chronic renal/kidney disease (stage I, II, III, IV or V), including end stage renal disease or chronic renal/kidney failure, cirrhosis of liver, classic hemochromatosis, collagen-induced arthritis (CIA), conditions with hepcidin excess (elevated hepcidin), congenital dyserythropoietic anemia, congestive heart failure, Crohn's disease, diabetes, disorders of iron biodistribution, disorders of iron homeostasis, disorders of iron metabolism, ferroportin disease, ferroportin mutation hemochromatosis, folate deficiency, Friedrich's ataxia, funicular myelosis, gracile syndrome, H. pyelori infection or other bacterial infections, Hallervordan Spatz disease, hemochromatosis, hemochromatosis resulting from mutations in transferrin receptor 2, hemoglobinopathies, hepatitis, hepatitis (Brock), hepatitis C, hepatocellular carcinoma, hereditary hemochromatosis, HIV or other viral illnesses, Huntington's disease, hyperterritinemia, hypochromic microcytic anemia, hypoferremia, insulin resistance, iron deficiency anemia, iron deficiency disorders, iron overload disorders, iron-deficiency conditions with hepcidin excess, juvenile hemochromatosis (HFE2), multiple sclerosis, mutation in transferrin receptor 2, HFE, hemojuvelin, ferroportin or other genes of iron metabolism, neonatal hemochromatosis, neurodegenerative diseases related to iron, osteopenia, osteoporosis pancreatitis, Pantothenate kinaseassociated neurodegeneration, Parkinson's disease, pellagra, pica, porphyria, porphyria cutanea tarda, pseudoencephalitis, pulmonary hemosiderosis, red blood cell disorders, rheumatoid arthritis, sepsis, sideroblastic anemia, systemic lupus erythematosus, thalassemia, thalassemia intermedia, transfusional iron overload, tumors, vasculitis, vitamin B6 deficiency, vitamin B12 deficiency, and/or Wilson's disease.

[0028] In some embodiments, methods of treating anemia are provided, in which a human administered any of the foregoing antibodies or compositions and an erythropoiesis stimulator. Exemplary erythropoiesis stimulators include erythropoietin, erythropoietin variants and peptides or antibodies that bind and activate erythropoietin receptor. Other exemplary erythropoiesis stimulators include human erythropoietin of SEQ ID NO: 72 or darbepoetin alfa of SEQ ID NO: 73. Exemplary forms of anemia that may be treated according to such methods include anemia of inflammation, anemia of cancer, chemotherapy induced anemia, iron deficiency anemia, a disorder of iron homeostasis, ferroportin disease, or anemia resulting from kidney disease. Also provided are methods of treating a mammal with anemia that is hypo-responsive, or even resistant, to therapy with an erythropoiesis stimulator, comprising administering a therapeutically effective amount of an antibody that specifically binds

human hepcidin. Any of the foregoing methods may also include administering iron to the subject.

[0029] The foregoing summary is not intended to define every aspect of the invention, and additional aspects are described in other sections, such as the Detailed Description. The entire document is intended to be related as a unified disclosure, and it should be understood that all combinations of features described herein may be contemplated, even if the combination of features are not found together in the same sentence, or paragraph, or section of this document.

[0030] In addition to the foregoing, the invention can include, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations defined by specific paragraphs herein. For example, certain aspects of the invention that are described as a genus, and it should be understood that every member of a genus is, individually, an aspect of the invention. Also, aspects described as a genus or selecting a member of a genus, should be understood to embrace combinations of two or more members of the genus.

[0031] It should be understood that while various embodiments in the specification are presented using "comprising" language, under various circumstances, a related embodiment may also be described using "consisting of or "consisting essentially of" language. It is to be noted that the term "a" or "an", refers to one or more, for example, "an immunoglobulin molecule," is understood to represent one or more immunoglobulin molecules. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0032] It should also be understood that when describing a range of values, the characteristic being described could be an individual value found within the range. For example, "a pH from about pH 4 to about pH 6," could be, but is not limited to, pH 4, 4.2, 4.6, 5.1 5.5 etc. and any value in between such values. Additionally, "a pH from about pH 4 to about pH 6," should not be construed to mean that the pH of a formulation in question varies 2 pH units in the range from pH 4 to pH 6 during storage, but rather a value may be picked in that range for the pH of the solution, and the pH remains buffered at about that pH. In some embodiments, when the term "about" is used, it means the recited number plus or minus 5%, 10%, 15% or more of that recited number. The actual variation intended is determinable from the context. Although the applicant(s) invented the full scope of the invention described herein, the applicants do not intend to claim subject matter described in the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0033] FIG. 1 shows the off-rates for antibodies 1S1, 1S3, 2.7, 18B11, 23F11 and 26F11.

[0034] FIG. 2 shows murine anti-hepcidin antibody 2.7°s functional ability to drive down intracellular iron concentrations in a beta-lactamase iron-response assay.

[0035] FIG. 3 shows the ability of human anti-hepcidin antibodies 18B11, 23F11 and 24E4 to drive down intracellular iron concentrations in a beta-lactamase iron-response assay

[0036] FIG. 4 demonstrates that an anti-hepcidin antibody neutralizes human hepcidin injected into mice.

[0037] FIGS. 5A-E demonstrate that antibody neutralization of human hepcidin virally expressed mice restores normal early red cell characteristics.

[0038] FIGS. 6A-B demonstrate that treatment with antibody 18B11 restored normal early red cell characteristics.

[0039] FIGS. 7A-B demonstrate that treatment with antibody 18B11 leads to significant reduction in total hepcidin levels

[0040] FIG. 8 shows a titration of adenovirus-associated virus (AAV)-mediated hepcidin expression and resulting serum iron concentrations.

[0041] FIG. 9 shows that viral overexpression of hepcidin causes hypo-responsiveness to erythropoietin.

[0042] FIGS. 10A-E demonstrate that an anti-hepcidin antibody restores responsiveness to erythropoietin in mice virally over-expressing hepcidin.

[0043] FIGS. 11A-C shows that neutralization of hepcidin by anti-hepcidin antibody treatment restores responsiveness to erythropoietin in human hepcidin knock-in mice with anemia of inflammation.

 $[0044]~{\rm FIG.}~12$ demonstrates that hepcidin levels are elevated in anemia of cancer patients (AoC) and not in normal patients.

[0045] FIG. 13 demonstrates that hepcidin levels correlate with diagnosis of inflammatory anemia and not iron deficiency anemia.

[0046] FIG. 14A shows a decision tree of iron indices and disease states for assessment of a patient, in the absence of hepcidin measurement.

[0047] FIG. 14B shows a theoretical decision tree for assessment of a patient using measurement of hepcidin levels.

[0048] FIG. 15 shows prohepcidin concentration measured by a sandwich immunoassay, demonstrating that prohepcidin is not detectable in serum.

[0049] FIG. 16 shows results of a Biacore experiment demonstrating that two monoclonal antibodies can bind to hepcidin at once.

[0050] FIG. 17 demonstrates that a sandwich ELISA can be constructed with monoclonal antibodies raised against mature hepcidin.

[0051] FIG. 18 shows the concentration of hepcidin present in buffer, rabbit serum and pooled human serum as determined by a competitive binding assay.

[0052] FIG. 19 shows the measurement of hepcidin in human sera.

[0053] FIG. 20 shows the concentration of hepcidin present in normal human sera using a competitive binding assay.

[0054] FIG. 21 shows the serum antibody concentration of antibodies 1S1 and 18B11 after administration of antibody-hepcidin complexes at various timepoints.

[0055] FIG. 22 shows the serum hepcidin concentration after administration of antibody-antigen complexes at various timepoints.

[0056] FIG. 23 shows the total urine hepcidin concentration mice pre-dosed with antibody 1S1 or 18B11 at various time points.

[0057] FIG. 24 shows the serum hepcidin concentration after administration of antibodies 18B11 and 1S1 at various timepoints.

[0058] FIG. 25 shows the serum hepcidin concentration in mice pre-dosed with antibody 1S1 and 18B11 at various timepoints.

[0059] FIG. 26 demonstrates that antibody 18B11 causes an accumulation of intracellular hepcidin.

DETAILED DESCRIPTION OF THE INVENTION

[0060] Described herein are antibodies that exhibit one or more properties that are associated with enhanced target antigen clearance from the circulation. Normally, antibodies are internalized into cells and then recycled back into circulation via a pathway involving the receptor FcRn (SEQ ID NO: 400). See, e.g., Prabhat et al., *Proc. Nat'l Acad. Sci.*, 104(14): 5889-5894 (2007). Antibodies (either alone or complexed with antigen) are internalized into the acidified endosomes of the cells. Some of these antibodies in the acidified endosomes then bind to FcRn, which then recycles the antibodies and any associated antigen back out of the cell. Antibodies and/or antigen which did not bind to FcRn are transported to the lysosomes where they are degraded.

[0061] Antibodies are provided herein that exhibit differential pH binding to an antigen at a pH below about 7.4, as well as improved methods of treatment using such antibodies. For example, in some embodiments, such antibodies bind to antigen with at least about 50-fold to 1000-fold or more reduced binding affinity at a pH of about 5.5 or about 6 compared to a pH of about 7.4 (as measured by a 50-fold to 1000-fold or higher relative K_D at pH of about 5.5 or about 6 compared to at a pH of about 7.4). In some embodiments, the antibodies exhibit rapid off-rate for antigen of about 6×10^{-2} s^{-1} or higher, or about 1×10^{-1} s⁻¹ or higher. Such antibodies are expected to bind antigen in circulation but tend to release the antigen in acidified endosomes at a pH of about 5.5 or about 6. The greater release of antigen in acidified lysosomes is associated with greater degradation of the target antigen and enhanced clearance of antigen. Another property may be greater recycling of free antibodies (unbound to antigen) into circulation to bind to additional antigen. In contrast, antibodies that do not release their antigen are more frequently recycled into circulation as an antibody-antigen complex, resulting in the inability of the antibody to bind to and ultimately clear additional antigen from circulation.

[0062] Also provided are antibodies that produce increased, e.g., at least 1.5-fold or 2-fold, intracellular accumulation of target antigen and/or enhanced clearance of antigen from circulation and/or reduced accumulation of circulating antigen, as well as improved methods of treatment using such antibodies. Other properties of such antibodies may include prevention of build-up of antibody-antigen complexes in circulation, making more recycled free antibody available to bind antigen than conventional antibodies, better potency, and reduced dose and/or frequency of administration to achieve therapeutic effectiveness.

[0063] Target antigens can include soluble antigens that have a relatively high level of production and/or a short half-life in circulation of about 24 hours or less, or about 18, 12, 8, 4, 3, 2, or 1 hour or less, or about 45, 30, or 15 minutes or less. Antibodies will generally bind to the target antigen with a ${\rm K}_D$ in the range of $1\times 10^{-6}{\rm M}$ or less, or ranging down to $10^{-16}{\rm M}$ or lower, (e.g., about 10^{-6} , about 10^{-7} , about 10^{-8} , about 10^{-9} ,

about 10^{-10} , about 10^{-11} , about 10^{-12} , about 10^{-13} , about 10^{-14} , about 10^{-15} , about 10^{-16} or less), where lower K_D indicates better affinity.

[0064] Also provided are methods of screening for antibodies with desired properties comprising identifying an antibody that exhibits differential pH binding to an antigen at a pH below about 7.4, and optionally demonstrating that the antibody exhibits enhanced target antigen clearance relative to an antibody of similar or better binding affinity that does not exhibit differential pH binding, and/or optionally demonstrating that the antibody exhibits increased intracellular accumulation of target antigen and/or reduced accumulation of circulating antigen relative to an antibody of similar or better binding affinity that does not exhibit differential pH binding.

[0065] In another aspect, methods of treatment are provided that involve administering therapeutically effective amounts of antibodies with the above-described properties, optionally also involving detecting circulating blood level of a target antigen before or concurrent with said administration, and detecting circulating blood level of said target antigen after said administration, e.g. about 24 hours, 2 days, 3, 4, 5, 6, 7 days, or 2 weeks after said administration.

[0066] Hepcidin is a good target antigen for antibodies that exhibit the properties described herein. Hepcidin has a relatively short half-life (Rivera et al., Blood, 106:2196-2199, 2005). The human hepcidin gene encodes an 84 residue prepropeptide (SEQ ID NO: 8). The corresponding cDNA and genomic sequences are set forth in SEQ ID NOs: 7 and 100, respectively. The 24-residue N-terminal signal peptide (residues 1-24 of SEQ ID NO: 8) is first cleaved to produce pro-hepcidin, which is then further processed by cleavage of the prodomain (residues 25-59 of SEQ ID NO: 8) to produce the 25-residue mature hepcidin (residues 60-84 of SEQ ID NO: 8, set forth in SEQ ID NO: 9). In addition to the primary 25 amino acid form, further N-terminally truncated forms that are 20 or 22 amino acids in length can be identified in urine (20 amino acids, SEQ ID NO: 96; and 22 amino acids, SEQ ID NO: 98). Mature human hepcidin contains eight cysteine residues, which are referred to herein sequentially as C1 through C8 (numbered from the N-terminus to the C-termi-

[0067] In some embodiments, the antibodies described herein bind to mature, correctly folded, bioactive human hepcidin in which disulfide bonds are formed between C1-C8, C2-C4, C3-C6 and C5-C7, with the desired affinity. In some embodiments, the antibodies inhibit the iron-regulating activity of hepcidin. In some embodiments, the monoclonal antibody decreases intracellular iron concentration and/or increases circulating iron concentration at an EC₅₀ of about 10^{-8} M or less, or about 20 nM or less. In some embodiments, the antibody exhibits the property in mammals of increasing red blood cell count (number) or hemoglobin or hematocrit levels, and/or normalizing reticulocyte count, reticulocyte mean cell volume and/or reticulocyte hemoglobin content, increases circulating iron level or Tsat in a mouse overexpressing human hepcidin for at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 days or longer after a single dose of the antibody.

Anti-Hepcidin Antibodies and Specific Binding Agents

[0068] The term "antibody" is used in the broadest sense and includes fully assembled antibodies, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (including bispecific antibodies), antibody fragments that can

bind an antigen (including, Fab', F'(ab)₂, Fv, single chain antibodies, diabodies), and recombinant peptides comprising the foregoing as long as they exhibit the desired biological activity. Multimers or aggregates of intact molecules and/or fragments, including chemically derivatized antibodies, are contemplated. Antibodies of any isotype class or subclass, including IgG, IgM, IgD, IgA, and IgE, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2, or any allotype, are contemplated. Different isotypes have different effector functions; for example, IgG1 and IgG3 isotypes have antibody-dependent cellular cytotoxicity (ADCC) activity.

[0069] In some embodiments, the antibodies described herein exhibit differential pH binding to an antigen. The term "differential pH binding" as used herein refers to an antibody that binds to its antigen with high affinity (lower K_D) at a pH of about 7.4 but binds to the antigen with a lower affinity (higher K_D) at a lower pH. An antibody that exhibits a K_D that is at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 550, at least 600, at least 650, at least 750, at least 550, at least 850, at least 900, at least 950, at least 1000-fold or more higher for its antigen at a pH more acidic than a pH of about 7.4 (e.g., a pH of about 7.0, about 6.5, about 6.0, about 5.5, about 5.0 or about 4.5) is specifically contemplated.

[0070] The term "binding affinity" or "affinity" as used herein refers to the equilibrium dissociation constant (K_D) associated with each antigen-antibody interaction. In some embodiments, the antibodies described herein exhibit desirable properties such as binding affinity as measured by K_D for hepcidin in the range of 1×10^{-6} M or less, or ranging down to 10^{-16} M or lower, (e.g., about 10^{-6} , 10^{-7} , 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} , 10^{-12} , 10^{-13} , 10^{-14} , 10^{-15} , 10^{-16} M or less) at about pH 7.4, where lower K_D indicates better affinity. Optionally the antibody further exhibits a K_D for hepcidin at least 50-1000 fold higher (less binding affinity) at about pH 5.5 or about pH 6 compared to at a pH of about 7.4. The equilibrium dissociation constant can be determined in solution equilibrium assay using BIAcore and/or KinExA, such as described in Examples 3 and 4.

[0071] The binding affinity is directly related to the ratio of the kinetic off-rate (generally reported in units of inverse time, e.g. seconds⁻¹) divided by the kinetic on-rate (generally reported in units of concentration per unit time, e.g. M/s). Off-rate analysis can estimate the interaction that occurs in vivo, since a slow off-rate would predict a greater degree of interaction over long period of time. In some embodiments, the antibodies described herein exhibit an off-rate of about 6×10^{-2} s⁻¹ or higher, or about 1×10^{-1} s⁻¹ or higher (faster off-rate) at about pH 5.5 or about pH 6. Optionally, the antibody also exhibits an off rate of 1×10^{-3} s⁻¹ or less (slower off-rate) at about pH 7.4. In other embodiments, the antibodies described herein exhibit an off-rate (measured in s⁻¹) that is at least about 10-fold, 20, 30, 40, 50, 60, 70, 80, 90 or 100-fold higher at about pH 5.5 or about pH 6 compared to the off-rate at about pH 7.4.

[0072] In other embodiments, the antibodies described herein exhibit specificity for or specifically bind to human hepcidin. As used herein, an antibody is "specific for" or "specifically binds" human hepcidin when it has a significantly higher binding affinity for, and consequently is capable of distinguishing, human hepcidin compared to other unrelated proteins in different families. In some embodiments, such antibodies may also cross-react with hepcidin of other

species, such as murine, rat, or primate hepcidin; while in other embodiments, the antibodies bind only to human or primate hepcidin and not significantly to rodent hepcidin. In some embodiments, antibodies bind to human and cynomologous monkey hepcidin but not significantly to rodent hepcidin. In some embodiments, antibodies specific for hepcidin cross-react with other proteins in the same family, while in other embodiments, the antibodies distinguish hepcidin from other related family members, including defensins or mouse hepc2.

[0073] In some embodiments, the antibodies exhibit "enhanced target antigen clearance", meaning they produce a faster or greater reduction in circulating blood levels of total target antigen. For example, enhanced antigen clearance compared to an antibody that does not exhibit differential pH binding can be measured by comparing blood levels of target antigen at a certain time point, e.g. about 12, 24, 36, 48, or 72 hours after administration of antibody. Enhanced antigen clearance will result in greater reduction in blood level at the same time point. Alternatively, for example, enhanced antigen clearance can be measured by comparing the time period required to reduce target antigen to, e.g., 25%, 50%, 75% or 90% of its blood level prior to administration of antibody. Enhanced antigen clearance will result in a shorter time period to achieve such reduction. As yet another alternative, enhanced antigen clearance is indicated by greater internalization of target antigens into cells expressing FcRn, as measured by intracellular accumulation of target antigen.

[0074] In yet other embodiments, the monoclonal antibodies inhibit (or neutralize) hepcidin iron-regulating activity, in vitro and or in vivo. Such hepcidin-neutralizing antibodies are therapeutically useful for hepcidin-related disorders or disorders of iron homeostasis. Hepcidin neutralizing activity can be measured through a number of markers, for example, ferritin/iron levels, red blood cell count, red blood cell characteristics (hemoglobin content and/or cell volume), early red blood cell characteristics (reticulocyte numbers, hemoglobin content or cell volume) (Clinical Hematology, third edition, Lippincott, Williams and Wilkins; editor Mary L. Turgeon, 1999) ferroportin internalization, or iron transport. In one embodiment, the monoclonal antibody decreases intracellular iron concentration at an EC₅₀ of about 10⁻⁸ M or less and/or increases circulating iron concentration.

[0075] In some embodiments, a monoclonal antibody as described herein antagonizes the effect of human hepcidin or inhibits hepcidin iron-regulating activity. In some embodiments, a monoclonal antibody as described herein exerts an effect at an EC₅₀ of about 1×10^{-8} M or less, or about 1×10^{-7} M or less. For example, an antibody may decrease the intracellular iron level in a cell at an EC $_{50}$ of about $1{\times}10^{-8}$ M or less, or may reduce ferritin expression at an EC_{50} of about 1×10^{-8} M or less, as determined by a ferritin assay. In other embodiments, a monoclonal antibody as described herein may reduce free serum hepcidin levels by at least about 20%, by at least about 30%, by at least about 40%, by at least about 50%, by at least about 60%, by at least about 70%, by at least about 80%, or by at least about 90%. In other embodiments, a monoclonal antibody as described herein may increase red blood cell count (number), red blood cell mean cell volume or red blood cell hemoglobin content, increase hemoglobin, increase hematocrit, increase Tsat, increase circulating (or serum) iron levels, and/or increase or normalize reticulocyte count, reticulocyte mean cell volume, reticulocyte hemoglobin content or reticulocyte numbers.

[0076] In some embodiments, the invention contemplates: 1) a monoclonal antibody that retains any one, two, three, four, five, or six of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 or CDRL3 of any of antibody Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11, optionally including one or two mutations in such CDR(s), wherein the antibody exhibits differential pH binding, and/or rapid off rate (e.g., 6×10^{-2} s⁻¹ or higher) at a pH of about 5.5 or about 6, and/or enhanced hepcidin clearance; 2) a monoclonal antibody that retains all of CDRH1, CDRH2, CDRH3, or the heavy chain variable region of any of antibody Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11, optionally including one or two mutations in such CDR(s), wherein the antibody exhibits differential pH binding, and/or rapid off rate (e.g., 6×10^{-2} s⁻¹ or higher) at a pH of about 5.5 or about 6, and/or enhanced hepcidin clearance; 3) a monoclonal antibody that retains all of CDRL1, CDRL2, CDRL3, or the light chain variable region of any of antibody Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11, optionally including one or two mutations in such CDR(s), wherein the antibody exhibits differential pH binding, and/or rapid off rate (e.g., 6×10^{-2} s⁻¹ or higher) at a pH of about 5.5 or about 6, and/or enhanced hepcidin clearance; 4) a monoclonal antibody that binds to the same epitope of mature human hepcidin as antibody Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11, e.g. as determined through X-ray crystallography, or a conformational epitope comprising an amino acid within amino acids 1-5 of SEQ ID NO: 9 and/or an amino acid within a loop formed by amino acids 10-13 of SEQ ID NO: 9 and/or an amino acid within a loop formed by amino acids 14-22 of SEQ ID NO: 9, wherein the antibody exhibits differential pH binding, and/or rapid off rate (e.g., 6×10^{-2} s⁻¹ or higher) at a pH of about 5.5 or about 6, and/or enhanced hepcidin clearance; 5) a monoclonal antibody that competes with antibody Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11 for binding to mature human hepcidin by more than about 75%, more than about 80%, or more than about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% (e.g., assessed by competitive ELISA or Biacore or by other methods known in the art), wherein the antibody exhibits differential pH binding, and/or rapid off rate (e.g., 6×10⁻² s⁻¹ or higher) at a pH of about 5.5 or about 6, and/or enhanced hepcidin clearance; 6) a monoclonal antibody that specifically binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D (equilibrium dissociation constant) for hepcidin in the range of 1×10^{-8} M or less, or ranging down to 10^{-16} M or lower, (e.g., about 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} , 10^{-12} , 10^{-13} , 10^{-14} , 10^{-15} , 10^{-16} M or less) as measured by BIAcore or KinExA and that exhibits at least one, two, three or more of the properties selected from the group consisting of: i) differential pH binding as shown by at least about 50-1000 fold lower affinity (or higher K_D) at a pH of about 5.5 or about 6 compared to at about pH 7.4; ii) at least about 5, 6, 7, 8, 9, or

10-fold faster clearance of said hepcidin compared to antibody 1S1; iii) a rapid off rate as measured by, e.g., an off-rate of about 6×10^{-2} s⁻¹ or higher at about pH 5.5 or about pH 6, or an off-rate of about 1×10^{-1} s⁻¹ or higher at about pH 5.5 or about pH 6, or an off rate of at least about 10-fold, 20, 30, 40, 50, 60, 70, 80, 90 or 100-fold higher at about pH 5.5 or about 6 compared to the off-rate at about pH 7.4; iv) reduces the level of total human hepcidin in serum by at least about 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg dose of said antibody and (ii) a pre-complexed single dose of 3.7 µg of human hepcidin with a 1 mg dose of said antibody; v) reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 µg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody; vi) produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1; vii) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1, e.g., at about 24 hours; and/or viii) increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody. [0077] In some embodiments, an antibody described herein exhibits differential pH binding as shown by at least about 50-1000 fold lower affinity (higher K_D) at a pH of about 5.5 or about 6 compared to at about pH 7.4 and also exhibits (1) at least about 5, 6, 7, 8, 9, or 10-fold faster clearance of said hepcidin compared to antibody 1S1; and/or (2) a rapid off rate of, e.g., about 6×10^{-2} s⁻¹ or higher at about pH 5.5 or about pH 6; and/or (3) reduces the level of total human hepcidin in serum by at least about 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg dose of said antibody and (ii) a pre-complexed single dose of 3.7 µg of human hepcidin with a 1 mg dose of said antibody; and/or (4) reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 µg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody; and/or (5) further produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1; and/or (6) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and/or (7) increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody.

[0078] In some embodiments, an antibody described herein exhibits at least about 5, 6, 7, 8, 9, or 10-fold faster clearance of said hepcidin compared to antibody 1S1 and also (1) reduces the level of total human hepcidin in serum by at least about 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg dose of said antibody and (ii) a pre-complexed single dose of 3.7 μ g of human hepcidin with a 1 mg dose of said antibody; and/or (2) reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 μ g of human hepcidin, wherein said

hepcidin is administered three days after said mouse is predosed with said antibody; and/or (3) produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1; and/or (4) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1 and/or (5) increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody.

[0079] In some embodiments, the antibody exhibits a rapid off-rate, e.g., about 6×10^{-2} s⁻¹ or higher at about pH 5.5 or about pH 6 and also (1) reduces the level of total human hepcidin in serum by at least about 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg dose of said antibody and (ii) a pre-complexed single dose of 3.7 µg of human hepcidin with a 1 mg dose of said antibody; and/or (2) reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 µg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody; and/or (3) produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1; and/or (4) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and/or (5) increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody.

[0080] In some embodiments, an antibody described herein reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 µg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody, and also (1) produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1; and/or (2) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and/or (3) increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody.

[0081] In some embodiments, an antibody described herein produces at least about 1.5-fold or 2-fold higher intracellular accumulation of human hepcidin in FcRn-transfected HEK293 cells compared to antibody 1S1 and also results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and/or increases circulating iron level or Tsat in a mouse expressing hepcidin for at least about 1 day, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 days or more after a single dose of the antibody.

[0082] In another aspect, methods are provided for modifying antibodies that lack properties such as differential pH binding and/or enhanced target antigen clearance) to produce

antibodies that exhibit such properties. The antibody can be an anti-hepcidin antibody produced by such methods. In some embodiments, residues in the CDRs and/or residues that according to three-dimensional modeling are predicted to be most affected by introduction of an amino acid with a pKa in the range of pH of about 5.5 to about 7.4 are mutated by the introduction of such an amino acid, e.g. histidine. Histidine is an amino acid that is sensitive to pH shifts from 7.4 to 6.0, as the imidazole side chain of histidine has a pKa just over 6, which may vary slightly higher or lower depending on the environment of the amino acid. Upon a change in pH from about 7.4 to a lower pH of about 6.0 or 5.5, for example, the mutated antibody may undergo an allosteric conformational change that would disrupt antigen-antibody interaction.

[0083] Candidate residues for mutation include residues that are directed contact sites with antigen or sites that contribute to the formation of charge-charge interactions along the antibody-antigen binding interface. Other candidate residues include residues within conserved regions of the antibody. Yet other candidate residues include framework residues that are at least 10% surface exposed and within 4.5 Å of a CDR residue. Additional candidate residues include those selected by visual inspection of a 3-dimensional structural model for amino acids in proximity to the CDRs or selected framework residues. Histidine or other desired amino acids can be mutated at single or multiple positions within the amino acid sequence. For example, mutations which produce some differential pH binding effect as single mutations can be combined as double, triple or more multiple mutations. Antibodies that have been mutated in such a manner are then screened for differential pH binding and then can be further screened for other properties.

[0084] In one aspect, at least one, two, three, four, five, six or more residues in the heavy chain variable region of said antibody are deleted and replaced with a histidine residue. In another aspect, at least one, two, three, four, five, six or more residues in the light chain variable region of said antibody are deleted and replaced with a histidine residue. In some aspects, at least one residue from the light chain variable region of said antibody and at least one residue from the heavy chain variable region of said antibody is replaced with a histidine residue. In one embodiment, at least one residue in the heavy chain variable region at a position selected from the group consisting of 52, 57, 99 and 107 of SEQ ID NO: 170 is replaced with a histidine residue. In another embodiment, at least one residue in the light chain variable region at a position selected from the group consisting of 27 and 89 of SEQ ID NO: 168 is replaced with a histidine residue. In another embodiment, the amino acids at positions 57 and 107 of the heavy chain variable region of SEQ ID NO: 170 are replaced with a histidine residue. In another embodiment, the amino acids at position 107 of the heavy chain variable region of SEQ ID NO: 170 and position 27 of the light chain variable region of SEQ ID NO: 168 are replaced with a histidine. In another embodiment, the amino acid at position 107 of the heavy chain variable region of SEQ ID NO: 170 and the amino acid at position 89 of the light chain variable region of SEQ ID NO: 168 is replaced with a histidine. In another embodiment, the amino acid at positions 99 and 107 of the heavy chain variable region of SEQ ID NO: 170 are replaced with a histidine.

[0085] In one embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 16-21

(Ab 43). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 28-33 (2.7 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 40-45 (2.41 CDRs). In yet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 52-57 (R9 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 111-116 (1C9 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 121-126 (3B3 CDRs). In vet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 131-136 (4E1 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 141-146 (7A3 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 151-156 (9D12 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 161-166 (12B9 CDRs). In yet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 171-176 (15E1 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 334-339 (18B11 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 314-319 (18D8 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 344-349 (19B8 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 324-329 (19C1 CDRs). In yet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 294-299 (19D12 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 304-309 (19H6 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 354-359 (20E12 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 364-369 (22F12 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 374-379 (22H10 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 384-389 (23A11 CDRs). In yet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 181-186 (23F11 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 394-399 (24E4 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 191-196 (26F11 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 203-205 and 131-133 (1S1 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 214-216 and 144-146 (1S2 CDRs). In yet another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 225-227 and 164-166 (1S3 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 236-238 and 174-176 (1S4 CDRs). In another embodiment, the antibody comprises at least one, two, three, four, five or all of the amino acid sequences selected from the group consisting of SEQ ID NOs: 247-249 and 184-186 (1S5 CDRs).

[0086] In some embodiments, the antibody comprises all three light chain CDRs, all three heavy chain CDRs, or all six CDRs. In some embodiments, two light chain CDRs from an antibody may be combined with a third light chain CDR from a different antibody. Alternatively, a CDRL1 from one antibody and a CDRL3 from yet another antibody, particularly where the CDRs are highly homologous. Similarly, two heavy chain CDRs from an antibody may be combined with a third heavy chain CDR from a different antibody; or a CDRH1 from one antibody can be combined with a CDRH2 from a different antibody and a CDRH3 from yet another antibody, particularly where the CDRs are highly homologous.

[0087] Consensus CDRs may also be used. In one embodiment, the antibody comprises one or more of the amino acid sequences set forth in SEQ ID NO: 74 (XASNLES), SEQ ID NO: 75 (XQSNEE) and SEQ ID NO: 76 (QQXNEX), SEQ ID NO: 28 (RASESVDSYGNSFMH), SEQ ID NO: 77 (WINTXSGVPTYADDFXG), SEQ ID NO: 78 (XXYYGX*A*Y), SEQ ID NO: 19 (TYGMS), SEQ ID NO: 284 (VIXYXXSNKYYADSVKG), SEQ ID NO: 285 (WIXAXNGXXXXAXXXQX), SEQ ID NO: 286 (AQEGXAPDAFDI), SEQ ID NO: 287 (QAWYSSTNVX), SEQ ID NO: 288 (QAWDSSTAXX), SEQ ID NO: 289 (QSDYSSXXX**), wherein X is any amino acid and * can be absent or any amino acid.

[0088] In yet another embodiment, the antibody comprises the light and/or heavy chain variable region of an antibody, e.g., SEQ ID NO: 15 (Ab43 heavy chain variable region), and/or SEQ ID NO: 13 (Ab43 light chain variable region); SEQ ID NO: 27 (2.7 heavy chain variable region), and/or SEQ ID NO: 25 (2.7 light chain variable region); SEQ ID NO: 39 (2.41 heavy chain variable region), and/or SEQ ID NO: 51 (R9 heavy chain variable region), and/or SEQ ID NO: 49 (R9 light

chain variable region), SEQ ID NO: 110 (1C9 heavy chain variable region) and/or SEQ ID NO: 108 (1C9 light chain variable region); or SEQ ID NO: 120 (3B3 heavy chain variable region) and/or SEQ ID NO: 118 (3B3 light chain variable region); SEQ ID NO: 130 (4E1 heavy chain variable region) and/or SEQ ID NO: 128 (4E1 light chain variable region); or SEQ ID NO: 140 (7A3 heavy chain variable region) and/or SEQ ID NO:138 (7A3 light chain variable region); or SEQ ID NO: 150 (9D12 heavy chain variable region) and/or SEO ID NO: 148 (9D12 light chain variable region); SEQ ID NO: 160 (12B9 heavy chain variable region), and/or SEQ ID NO: 158 (12B9 light chain variable region); SEQ ID NO: 170 (15E1 heavy chain variable region) and/or SEQ ID NO: 168 (15E1 light chain variable region); SEQ ID NO: 333 (18B11 heavy chain variable region) and/or SEQ ID NO: 331 (18B11 light chain variable region); SEQ ID NO: 313 (18D8 heavy chain variable region) and/or SEQ ID NO: 311 (18D8 light chain variable region); SEQ ID NO: 343 (19B8 heavy chain variable region) and/or SEQ ID NO: 341 (19B8 light chain variable region); SEQ ID NO: 323 (19C1 heavy chain variable region) and/or SEQ ID NO: 321 (19C1 light chain variable region); SEQ ID NO: 293 (19D12 heavy chain variable region) and/or SEQ ID NO: 291 (19D12 light chain variable region); SEQ ID NO: 303 (19H6 heavy chain variable region) and/or SEQ ID NO: 301 (191-16 light chain variable region); SEQ ID NO: 353 (20E12 heavy chain variable region) and/or SEQ ID NO: 351 (20E12 light chain variable region); SEQ ID NO: 363 (22F12 heavy chain variable region) and/or SEQ ID NO: 361 (22F12 light chain variable region); SEQ ID NO: 373 (22H10 heavy chain variable region) and/or SEQ ID NO: 371 (22H10 light chain variable region); SEQ ID NO: 383 (23A11 heavy chain variable region) and/or SEQ ID NO: 381 (23A11 light chain variable region); SEQ ID NO: 180 (23F11 heavy chain variable region) and/or SEQ ID NO: 178 (23F11 light chain variable region); 393 (24E4 heavy chain variable region) and/or SEQ ID NO: 391 (24E4 light chain variable region); SEQ ID NO: 190 (26F11 heavy chain variable region) and/or SEQ ID NO: 188 (26F11 light chain variable region); or SEQ ID NO: 202 (1S1 heavy chain variable region) and/or SEQ ID NO: 128 (1S1 light chain variable region); SEQ ID NO: 213 (1S2 light chain variable region) and/or SEQ ID NO: 140 (1S2 heavy chain variable region); SEQ ID NO: 224 (1S3 light chain variable region) and/or SEQ ID NO: 160 (1S3 heavy chain variable region); SEQ ID NO: 235 (1S4 light chain variable region) and/or SEQ ID NO: 170 (1S4 heavy chain variable region; or SEQ ID NO: 246 (1S5 light chain variable region) and/or SEQ ID NO: 190 (1S5 heavy chain variable region).

[0089] In some embodiments, an antibody is provided that comprises a polypeptide having an amino acid sequence at least about 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: (Ab43 heavy chain variable region), 27 (2.7 heavy chain variable region), 39 (2.41 heavy chain variable region), 51 (R9 heavy chain variable region), 110 (1C9 heavy chain variable region), 120 (3B3 heavy chain variable region), 130 (4E1 heavy chain variable region), 140 (7A3 heavy chain variable region), 150 (9D12 heavy chain variable region), 160 (12B9 heavy chain variable region), 170 (15E1 heavy chain variable region), 333 (18B11 heavy chain variable region), 313 (18D8 heavy chain variable region), 343 (19B8 heavy chain variable region), 323 (19C1 heavy chain variable region), 293 (19D12 heavy chain variable region), 303 (19H6 heavy chain variable region), 353 (20E12 heavy chain variable region), 363 (22F12 heavy chain variable region), 373 (22H10 heavy chain variable region), 383 (23A11 heavy chain variable region), 180 (23F11 heavy chain variable region), 393 (24E4 heavy chain variable region), 190 (26F11 heavy chain variable region), 202 (1S1 heavy chain variable region), 13 (Ab43 light chain variable region), 25 (2.7 light chain variable region), 37 (2.41 light chain variable region), 49 (R9 light chain variable region), 108 (1C9 light chain variable region), 118 (3B3 light chain variable region), 128 (4E1 light chain variable region), 138 (7A3 light chain variable region), 148 (9D12 light chain variable region), 158 (12B9 light chain variable region), 168 (15E1 light chain variable region), 331 (18B11 light chain variable region), 311 (18D8 light chain variable region), 341 (19B8 light chain variable region), 321 (19C1 light chain variable region), 291 (19D12 light chain variable region), 301 (19H6 light chain variable region), 351 (20E12 light chain variable region), 361 (22F12 light chain variable region), 371 (22H10 light chain variable region), 381 (23A11 light chain variable region), 178 (23F11 light chain variable region), 391 (24E4 light chain variable region), 188 (26F11 light chain variable region), 213 (1S2 light chain variable region), 224 (1S3 light chain variable region), 235 (1S4 light chain variable region), 246 (1S5 light chain variable region), the polypeptide further comprising at least one or more of the amino acid sequences set forth in SEQ ID NOs: 16-21 (Ab43 CDRs), 28-33 (2.7CDRs), 40-45 (2.41 CDRs), 52-57 (R9 CDRs), 111-116 (1C9 CDRs), 121-126 (3B3 CDRs), 131-136 (4E1 CDRs), 141-146 (7A3 CDRs), 151-156 (9D12 CDRs), 161-166 (12B9 CDRs), 171-176 (15E1 CDRs), 334-339 (18B11 CDRs), 314-319 (18D8 CDRs), 344-349 (19B8 CDRs), 324-329 (19C1 CDRs), 294-299 (19D12 CDRs), 304-309 (19H6 CDRs), 354-359 (20E12 CDRs), 364-369 (22F12 CDRs), 374-379 (22H10 CDRs), 384-389 (23A11 CDRs), 181-186 (23F11 CDRs), 394-399 (24E4 CDRs), 191-196 (26F11 CDRs), 203-205 (1S1 light chain CDRs) and 131-133 (1S1 heavy chain CDRs), 214-216 (1S2 heavy chain CDRs) and 144-146 (1S2 light chain CDRs), 225-227 (1S3 heavy chain CDRs) and 164-166 (1S3 light chain CDRs), 236-238 (1S4 heavy chain CDRs) and 174-176 (1S4 light chain CDRs), 247-249 (1S5 heavy chain CDRs) and 184-186 (1S5 light chain CDRs). In any of the foregoing embodiments, the polypeptide includes a sequence comprising one or two modifications to any of the amino acid sequences set forth in SEQ ID NOs: 16-21 (Ab43 CDRs), 28-33 (2.7CDRs), 40-45 (2.41 CDRs), 52-57 (R9CDRs), 111-116 (1C9 CDRs), 121-126 (3B3 CDRs), 131-136 (4E1 CDRs), 141-146 (7A3 CDRs), 151-156 (9D12 CDRs), 161-166 (12B9 CDRs), 171-176 (15E1 CDRs), 334-339 (18B11 CDRs), 314-319 (18D8 CDRs), 343-349 (1988 CDRs), 324-329 (19C1 CDRs), 294-299 (19D12 CDRs), 304-309 (19H6 CDRs), 354-359 (20E12 CDRs), 364-369 (22F12 CDRs), 374-379 (22H10 CDRs), 384-389 (23A11 CDRs), 181-186 (23F11 CDRs), 394-399 (24E4 CDRs), 191-196 (26F11 CDRs), 203-205 (1S1 light chain CDRs) and 131-133 (1S1 heavy chain CDRs), 214-216 (1S2 heavy chain CDRs) and 144-146 (1S2 light chain CDRs), 225-227 (1S3 heavy chain CDRs) and 164-166 (1S3 light chain CDRs), 236-238 (1S4 heavy chain CDRs) and 174-176 (1S4 light chain CDRs), 247-249 (1S5 heavy chain CDRs) and 184-186 (1S5 light chain CDRs).

[0090] In some embodiments, the antibody comprises the heavy chain variable region of any of antibodies Ab43, 2.7,

2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11 and optionally comprises a constant region selected from the group consisting of a human IgG1 heavy chain constant region (SEQ ID NOs: 401-402) and a human IgG2 heavy chain constant region (SEQ ID NOs: 403-404). In some embodiments, the antibody comprises the light chain variable region of any of antibodies Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4, and 26F11 and optionally comprises a human kappa light chain constant region (SEQ ID NOs: 405-406). In another embodiment, the antibody comprises the light chain variable region of any of antibodies Ab43, 2.7, 2.41, R9, 1C9, 1S1, 1S2, 1S3, 1S4, 1S5, 3B3; 4E1, 7A3, 9D12, 12B9, 15E1, 18B11, 18D8, 19B8, 19C1, 19D12, 19H6, 20E12, 22F12, 22H10, 23A11, 23F11, 24E4 and 26F11 and optionally comprises a constant region selected from the group consisting of a human lambda light chain constant region type C1 (SEQ ID NOs: 407-408), a human lambda light chain constant region type C2 (SEQ ID NOs: 409-410), a human lambda light chain constant region type C3 (SEQ ID NOs: 411-412), a human lambda light chain constant region type C6 (SEQ ID NOs: 413-414) and a human lambda light chain constant region type C7 (SEQ ID NO: 415-416).

[0091] The cDNA and amino acid sequences for the full length light and heavy chains of each of antibodies 1C9, 3B3, 4E1, 7A3, 9D12, 12B9, 15E1, 23F11 and 26F11 are also provided. The cDNA sequences encoding the full length light chain of antibodies 1C9, 3B3, 4E1, 7A3, 9D12, 12B9, 15E1, 123F11, 26F11, 1S2, 1S3, 1S4 and 1S5, including the constant region, are set forth in SEQ ID NOs: 197, 208, 219, 230, 241, 252, 256, 260, 264, 217, 228, 239 and 250, respectively. The amino acid sequences of the full length light chain of antibodies 1C9, 3B3, 4E1, 7A3, 9D12, 12B9, 15E1, 23F11, 26F11, 1S2, 1S3, 1S4 and 1S5, including the constant region, are set forth in SEQ ID NOs: 198 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 209 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 220 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 231 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 242 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 253 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 257 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 261 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 265 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 218 (of which residues 1-22 correspond to the signal peptide and the remainder is the mature polypeptide), 229 (of which residues 1-22 correspond to the signal peptide and the remainder is the mature polypeptide), 240 (of which residues 1-22 correspond to the signal peptide and the remainder is the mature polypeptide) and 251 (of which residues 1-22 correspond to the signal peptide and the remainder is the mature polypeptide), respectively.

[0092] The cDNA sequences encoding the full length heavy chain of antibodies 1C9, 3B3, 4E1, 7A3, 9D12, 12B9,

15E1, 23F11, 26F11 and 1S1, including the constant region, are set forth in SEQ ID NOs: 199, 210, 221, 232, 243, 254, 258, 262, 266 and 206, respectively. The amino acid sequences of the full length heavy chain of antibodies 1C9, 3B3, 4E1, 7A3, 9D12, 12B9, 15E1, 23F11, 26F11 and 1S1, including the constant region, are set forth in SEQ ID NOs: 200 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 211 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 222 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 233 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 244 (no signal peptide), 255 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 259 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), 263 (of which residues 1-20 correspond to the signal peptide and the remainder is the mature polypeptide), 267 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide) and 207 (of which residues 1-19 correspond to the signal peptide and the remainder is the mature polypeptide), respectively.

[0093] In some embodiments of the invention, antibodies comprise amino acids 20-467 of SEQ ID NO: 207 (1S1 heavy chain) and amino acids 21-234 of SEQ ID NO: 220 (1S1 light chain); or amino acids 20-466 of SEQ ID NO: 233 (1S2 heavy chain) and amino acids 23-234 of SEQ ID NO: 218 (1S2 light chain); or amino acids 20-466 of SEQ ID NO: 255 (1S3 heavy chain) and amino acids 23-234 of SEQ ID NO: 229 (1S3 light chain); or amino acids 20-466 of SEQ ID NO: 259 (1S4 heavy chain) and wherein amino acids 23-234 of SEQ ID NO: 240 (1S4 light chain); or amino acids 20-466 of SEQ ID NO: 267 (1S5 heavy chain) and amino acids 23-234 of SEQ ID NO: 251 (1S5 light chain).

[0094] The term "monoclonal antibody" as used herein refers to an antibody, as that term is defined herein, obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations or alternative post-translational modifications that may be present in minor amounts, whether produced from hybridomas or recombinant DNA techniques. Nonlimiting examples of monoclonal antibodies include murine, rabbit, rat, chicken. chimeric, humanized, or human antibodies, fully assembled antibodies, multispecific antibodies (including bispecific antibodies), antibody fragments that can bind an antigen (including, Fab', F'(ab)₂, Fv, single chain antibodies, diabodies), maxibodies, nanobodies, and recombinant peptides comprising the foregoing as long as they exhibit the desired biological activity, or variants or derivatives thereof. Humanizing or modifying antibody sequence to be more human-like is described in, e.g., Jones et al., Nature 321:522 525 (1986); Morrison et al., Proc. Natl. Acad. Sci., U.S.A., 81:6851 6855 (1984); Morrison and 01, Adv. Immunol., 44:65 92 (1988); Verhoeyer et al., Science 239:1534 1536 (1988); Padlan, Molec. Immun., 28:489 498 (1991); Padlan, Molec. Immunol., 31(3):169 217 (1994); and Kettleborough, C. A. et al., Protein Engineering., 4(7):773 83 (1991); Co, M. S., et al. (1994), J. Immunol. 152, 2968-2976); Studnicka et al., Protein Engineering 7: 805-814 (1994); each of which is incorporated herein by reference in its entirety. One method for isolating human monoclonal antibodies is the use of phage display technology. Phage display is described in e.g., Dower et al., WO 91/17271, McCafferty et al., WO 92/01047, and Caton and Koprowski, *Proc. Natl. Acad. Sci. USA*, 87:6450-6454 (1990), each of which is incorporated herein by reference in its entirety. Another method for isolating human monoclonal antibodies uses transgenic animals that have no endogenous immunoglobulin production and are engineered to contain human immunoglobulin loci. See, e.g., Jakobovits et al., *Proc. Natl. Acad. Sci. USA*, 90:2551 (1993); Jakobovits et al., *Nature*, 362:255-258 (1993); Bruggermann et al., *Year in Immuno.*, 7:33 (1993); WO 91/10741, WO 96/34096, WO 98/24893, or U.S. Patent Application Publication Nos. 2003/0194404, 2003/0031667 or 2002/0199213; each incorporated herein by reference in its entirety.

[0095] An "isolated" antibody refers to an antibody, as that term is defined herein, that has been identified and separated from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In certain embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody, or more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or silver stain. Isolated naturally occurring antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification

[0096] An "immunoglobulin" or "native antibody" is a tetrameric glycoprotein. In a naturally-occurring immunoglobulin, each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The aminoterminal portion of each chain includes a "variable" ("V") region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Immunoglobulins can be assigned to different classes depending on the amino acid sequence of the constant domain of their heavy chains. Heavy chains are classified as mu (μ), delta (Δ), gamma (γ), alpha (α) , and epsilon (ϵ) , and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Several of these may be further divided into subclasses or isotypes, e.g. IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. Different isotypes have different effector functions; for example, IgG1 and IgG3 isotypes have antibody-dependent cellular cytotoxicity (ADCC) activity. Human light chains are classified as kappa (κ) and lambda (λ) light chains. Within light and heavy chains, the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)).

[0097] Allotypes are variations in antibody sequence, often in the constant region, that can be immunogenic and are encoded by specific alleles in humans. Allotypes have been identified for five of the human IGHC genes, the IGHG1, IGHG2, IGHG3, IGHA2 and IGHE genes, and are designated as G1m, G2m, G3m, A2m, and Em allotypes, respectively. At least 18 Gm allotypes are known: nG1m(1), nG1m(2), G1m

 $(1,2,3,17)\, or\, G1m\, (a,x,f,z), G2m\, (23)\, or\, G2m\, (n), G3m\, (5,6,10,11,13,14,15,16,21,24,26,27,28)\, or\, G3m\, (b1,c3,b5,b0,b3,b4,s,t,g1,c5,u,v,g5).$ There are two A2m allotypes A2m(1) and A2m(2).

[0098] For a detailed description of the structure and generation of antibodies, see Roth, D. B., and Craig, N. L., Cell, 94:411-414 (1998), herein incorporated by reference in its entirety. Briefly, the process for generating DNA encoding the heavy and light chain immunoglobulin sequences occurs primarily in developing B-cells. Prior to the rearranging and joining of various immunoglobulin gene segments, the V, D, J and constant (C) gene segments are found generally in relatively close proximity on a single chromosome. During B-cell-differentiation, one of each of the appropriate family members of the V, D, J (or only V and J in the case of light chain genes) gene segments are recombined to form functionally rearranged variable regions of the heavy and light immunoglobulin genes. This gene segment rearrangement process appears to be sequential. First, heavy chain D-to-J joints are made, followed by heavy chain V-to-DJ joints and light chain V-to-J joints. In addition to the rearrangement of V, D and J segments, further diversity is generated in the primary repertoire of immunoglobulin heavy and light chains by way of variable recombination at the locations where the V and J segments in the light chain are joined and where the D and J segments of the heavy chain are joined. Such variation in the light chain typically occurs within the last codon of the V gene segment and the first codon of the J segment. Similar imprecision in joining occurs on the heavy chain chromosome between the D and J_H segments and may extend over as many as 10 nucleotides. Furthermore, several nucleotides may be inserted between the D and J_H and between the V_H and D gene segments which are not encoded by genomic DNA. The addition of these nucleotides is known as N-region diversity. The net effect of such rearrangements in the variable region gene segments and the variable recombination which may occur during such joining is the production of a primary antibody repertoire.

[0099] The term "hypervariable" region refers to amino acid residues from a complementarity determining region or CDR (i.e., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain as described by Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). Even a single CDR may recognize and bind antigen, although with a lower affinity than the entire antigen binding site containing all of the CDRs.

[0100] An alternative definition of residues from a hypervariable "loop" is described by Chothia et al., *J. Mol. Biol.*, 196: 901-917 (1987) as residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain.

[0101] "Framework" or FR residues are those variable region residues other than the hypervariable region residues. [0102] "Antibody fragments" comprise a portion of an intact immunoglobulin, e.g., an antigen binding or variable region of the intact antibody, and include multispecific (bispecific, trispecific, etc.) antibodies formed from antibody fragments. Fragments of immunoglobulins may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies.

[0103] Nonlimiting examples of antibody fragments include Fab, Fab', F(ab')2, Fv (variable region), domain antibodies (dAb, containing a VH domain) (Ward et al., Nature, 341:544-546, 1989), complementarity determining region (CDR) fragments, single-chain antibodies (scFv, containing VH and VL domains on a single polypeptide chain) (Bird et al., Science, 242:423-426, 1988, and Huston et al., Proc. Natl. Acad. Sci., USA 85:5879-5883, 1988, optionally including a polypeptide linker; and optionally multispecific, Gruber et al., J. Immunol., 152: 5368 (1994)), single chain antibody fragments, diabodies (VH and VL domains on a single polypeptide chain that pair with complementary VL and VH domains of another chain) (EP 404,097; WO 93/11161; and Holliger et al., Proc. Natl. Acad. Sci., USA, 90:6444-6448 (1993)), triabodies, tetrabodies, minibodies (scFv fused to CH3 via a peptide linker (hingeless) or via an IgG hinge) (Olafsen, et al., Protein Eng Des Sel. 2004 April; 17(4):315-23), linear antibodies (tandem Fd segments (VH-CH1-VH-CH1) (Zapata et al., Protein Eng., 8(10):1057-1062 (1995)); chelating recombinant antibodies (crAb, which can bind to two adjacent epitopes on the sane antigen) (Neri et al., J Mol Biol., 246:367-73, 1995), bibodies (bispecific Fab-scFv) or tribodies (trispecific Fab-(scFv)(2)) (Schoonjans et al., J. Immunol. 165:7050-57, 2000; Willems et al., *J. Chromatogr.* B. Analyt. Technol. Biomed. Life Sci., 786:161-76, 2003), intrabodies (Biocca, et al., EMBO J., 9:101-108, 1990; Colby et al., Proc. Natl. Acad. Sci. USA, 101:17616-21, 2004) which may also comprise cell signal sequences which retain or direct the antibody intracellularly (Mhashilkar et al, EMBO J., 14:1542-51, 1995; Wheeler et al., FASEB J., 17:1733-5, 2003), transbodies (cell-permeable antibodies containing a protein transduction domain (PTD) fused to scFv (Heng et al., Med Hypotheses., 64:1105-8, 2005), nanobodies (approximately 15 kDa variable domain of the heavy chain) (Cortez-Retamozo et al., Cancer Research 64:2853-57, 2004), small modular immunopharmaceuticals (SMIPs) (U.S. Patent Application Publication 2003/0133939 and US Patent Application Publication 2003/0118592), an antigen-binding-domain immunoglobulin fusion protein, a camelized antibody (in which VH recombines with a constant region that contains hinge, CH1, CH2 and CH3 domains) (Desmyter et al., J. Biol. Chem., 276:26285-90, 2001; Ewert et al., Biochemistry, 41:3628-36, 2002; U.S. Patent Application Publication Nos. 2005/0136049 and 2005/0037421), a VHH containing antibody, heavy chain antibodies (HCAbs, homodimers of two heavy chains having the structure H2L2), or variants or derivatives thereof, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide, such as a CDR sequence, as long as the antibody retains the desired biological activity.

[0104] The term "variant" refers to a polypeptide sequence of an antibody that contains at least one amino acid substitution, deletion, or insertion in the variable region or the portion equivalent to the variable region, provided that the variant retains the desired binding affinity or biological activity. In addition, the antibodies as described herein may have amino acid modifications in the constant region to modify effector function of the antibody, including half-life or clearance, ADCC and/or CDC activity. Such modifications can enhance pharmacokinetics or enhance the effectiveness of the antibody in treating cancer, for example. See Shields et al., *J. Biol. Chem.*, 276(9):6591-6604 (2001), incorporated by reference herein in its entirety. In the case of IgG1, modifications

to the constant region, particularly the hinge or CH2 region, may increase or decrease effector function, including ADCC and/or CDC activity. In other embodiments, an IgG2 constant region is modified to decrease antibody-antigen aggregate formation. In the case of IgG4, modifications to the constant region, particularly the hinge region, may reduce the formation of half-antibodies.

[0105] The term "modification" includes but is not limited to, one or more amino acid change (including substitutions, insertions or deletions); chemical modifications that do not interfere with hepcidin-binding activity; covalent modification by conjugation to therapeutic or diagnostic agents; labeling (e.g., with radionuclides or various enzymes); covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of non-natural amino acids. In some embodiments, modified polypeptides (including antibodies) will retain the binding properties of unmodified molecules.

[0106] The term "derivative" refers to antibodies or polypeptides that are covalently modified by conjugation to therapeutic or diagnostic agents, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of non-natural amino acids. In some embodiments, derivatives will retain the binding properties of underivatized molecules.

[0107] Methods for making bispecific or other multispecific antibodies are known in the art and include chemical cross-linking, use of leucine zippers (Kostelny et al., *J. Immunol* 148:1547-1553, 1992); diabody technology (Hollinger et al., *Proc. Natl. Acad. Sci. USA*, 90:6444-48, 1993); scFv dimers (Gruber et al., *J. Immunol.*, 152: 5368, 1994), linear antibodies (Zapata et al., *Protein Eng.*, 8:1057-62, 1995); and chelating recombinant antibodies (Neri et al., *J. Mol. Biol.*, 246:367-73, 1995).

[0108] Thus, a variety of compositions comprising one, two, and/or three CDRs of a heavy chain variable region or a light chain variable region of an antibody may be generated by techniques known in the art.

Recombinant Production of Antibodies

[0109] Isolated nucleic acids encoding monoclonal antibodies described herein are also provided, optionally operably linked to control sequences recognized by a host cell, vectors and host cells comprising the nucleic acids, and recombinant techniques for the production of the antibodies, which may comprise culturing the host cell so that the nucleic acid is expressed and, optionally, recovering the antibody from the host cell culture or culture medium.

[0110] Relevant amino acid sequence from an immunoglobulin of interest may be determined by direct protein sequencing, and suitable encoding nucleotide sequences can be designed according to a universal codon table. Alternatively, genomic or cDNA encoding the monoclonal antibodies may be isolated and sequenced from cells producing such antibodies using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).

[0111] Cloning is carried out using standard techniques (see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Guide, Vols 1-3, Cold Spring Harbor Press, which is incorporated herein by reference). For example, a cDNA library may be constructed by reverse transcription of polyA+

mRNA, e.g., membrane-associated mRNA, and the library screened using probes specific for human immunoglobulin polypeptide gene sequences. In one embodiment, however, the polymerase chain reaction (PCR) is used to amplify cDNAs (or portions of full-length cDNAs) encoding an immunoglobulin gene segment of interest (e.g., a light or heavy chain variable segment). The amplified sequences can be readily cloned into any suitable vector, e.g., expression vectors, minigene vectors, or phage display vectors. It will be appreciated that the particular method of cloning used is not critical, so long as it is possible to determine the sequence of some portion of the immunoglobulin polypeptide of interest.

[0112] One source for antibody nucleic acids is a hybridoma produced by obtaining a B cell from an animal immunized with the antigen of interest and fusing it to an immortal cell. Alternatively, nucleic acid can be isolated from B cells (or whole spleen) of the immunized animal. Yet another source of nucleic acids encoding antibodies is a library of such nucleic acids generated, for example, through phage display technology. Polynucleotides encoding peptides of interest, e.g., variable region peptides with desired binding characteristics, can be identified by standard techniques such as panning.

[0113] The sequence encoding an entire variable region of the immunoglobulin polypeptide may be determined; however, it will sometimes be adequate to sequence only a portion of a variable region, for example, the CDR-encoding portion. Sequencing is carried out using standard techniques (see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Guide, Vols 1-3, Cold Spring Harbor Press, and Sanger, F. et al., (1977) Proc. Natl. Acad. Sci. USA, 74: 5463-5467, which is incorporated herein by reference). By comparing the sequence of the cloned nucleic acid with published sequences of human immunoglobulin genes and cDNAs, one of skill will readily be able to determine, depending on the region sequenced, (i) the germline segment usage of the hybridoma immunoglobulin polypeptide (including the isotype of the heavy chain) and (ii) the sequence of the heavy and light chain variable regions, including sequences resulting from N-region addition and the process of somatic mutation. One source of immunoglobulin gene sequence information is the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda,

[0114] As used herein, an "isolated" nucleic acid molecule or "isolated" nucleic acid sequence is a nucleic acid molecule that is either (1) identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the nucleic acid or (2) cloned, amplified, tagged, or otherwise distinguished from background nucleic acids such that the sequence of the nucleic acid of interest can be determined. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

[0115] Once isolated, the DNA may be operably linked to expression control sequences or placed into expression vectors, which are then transfected into host cells that do not otherwise produce immunoglobulin protein, to direct the syn-

thesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies is well known in the art.

[0116] Expression control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

[0117] Nucleic acid is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, operably linked means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

[0118] Many vectors are known in the art. Vector components may include one or more of the following: a signal sequence (that may, for example, direct secretion of the antibody), an origin of replication, one or more selective marker genes (that may, for example, confer antibiotic or other drug resistance, complement auxotrophic deficiencies, or supply critical nutrients not available in the media), an enhancer element, a promoter, and a transcription termination sequence, all of which are well known in the art.

[0119] Cell, cell line, and cell culture are often used interchangeably and all such designations herein include progeny. Transformants and transformed cells include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included.

[0120] Exemplary host cells include prokaryote, yeast, or higher eukaryote cells (i.e., a multicellular organism). Prokaryotic host cells include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas, and Streptomyces. Eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for recombinant polypeptides or antibodies. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Pichia, e.g. P. pastoris, Schizosaccharomyces pombe; Kluyveromyces, Yarrowia; Candida; Trichoderma reesia; Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.

[0121] Host cells for the expression of glycosylated polypeptide or antibody can be derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosophila melanogaster* (fruitfly), and *Bombyx mori* have been identified. A variety of viral strains for transfection of such cells are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV.

[0122] Vertebrate host cells are also suitable hosts, and recombinant production of polypeptide or antibody from such cells has become routine procedure. Examples of useful mammalian host cell lines are Chinese hamster ovary cells, including CHOK1 cells (ATCC CCL61), DXB-11, DG-44, and Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)); monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, [Graham et al., J. Gen Virol. 36: 59 (1977)]; baby hamster kidney cells (BHK, ATCC CCL 10); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23: 243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human hepatoma cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci., 383: 44-68 (1982)); MRC 5 cells or FS4 cells; or mammalian myeloma cells.

[0123] Host cells are transformed or transfected with the above-described nucleic acids or vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. In addition, novel vectors and transfected cell lines with multiple copies of transcription units separated by a selective marker are particularly useful for the expression of antibodies.

[0124] The host cells used to produce an antibody described herein may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz., 58: 44 (1979), Barnes et al., Anal. Biochem., 102: 255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. Re. No. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

[0125] Upon culturing the host cells, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration.

[0126] The antibody can be purified using, for example, hydroxylapatite chromatography, cation or anion exchange chromatography, or affinity chromatography, using the antigen of interest or protein A or protein G as an affinity ligand. Protein A can be used to purify antibodies that are based on human y1, y2, or y4 heavy chains (Lindmark et al., J. Immunol. Meth. 62: 1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5: 15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C_H 3 domain, the Bakerbond ABXTMresin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as ethanol precipitation, Reverse Phase HPLC, chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also possible depending on the antibody to be recovered.

Chimeric and Humanized Antibodies

[0127] Because chimeric or humanized antibodies are less immunogenic in humans than the parental rodent monoclonal antibodies, they can be used for the treatment of humans with far less risk of anaphylaxis. Thus, these antibodies are contemplated in therapeutic applications that involve in vivo administration to a human.

[0128] For example, a murine antibody on repeated in vivo administration in man either alone or as a conjugate will bring about an immune response in the recipient, sometimes called a HAMA response (Human Anti Mouse Antibody). The HAMA response may limit the effectiveness of the pharmaceutical if repeated dosing is required. The immunogenicity of the antibody may be reduced by chemical modification of the antibody with a hydrophilic polymer such as polyethylene glycol or by using the methods of genetic engineering to make the antibody binding structure more human like.

[0129] The phrase "chimeric antibody," as used herein, refers to an antibody containing sequence derived from two different antibodies which typically originate from different species. Most typically, chimeric antibodies comprise variable Ig domains of a rodent monoclonal antibody fused to human constant Ig domains. Such antibodies can be generated using standard procedures known in the art (See Morrison, S. L., et al. (1984) "Chimeric Human Antibody Molecules; Mouse Antigen Binding Domains with Human Constant Region Domains," *Proc. Natl. Acad. Sci. USA*, 81, 6841-6855; and, Boulianne, G. L., et al, *Nature* 312, 643-646. (1984)). Although some chimeric monoclonal antibodies have proved less immunogenic in humans, the rodent variable Ig domains can still lead to a significant human anti-rodent response.

[0130] The phrase "humanized antibody" refers to an antibody derived from a non-human antibody, typically a rodent monoclonal antibody. Alternatively, a humanized antibody may be derived from a chimeric antibody.

[0131] Humanized antibodies may be achieved by a variety of methods including, for example: (1) grafting the nonhuman complementarity determining regions (CDRs) onto a human framework and constant region (a process referred to in the art as humanizing through "CDR grafting"), or, alternatively, (2) transplanting the entire non-human variable domains, but "cloaking" them with a human-like surface by replacement of surface residues (a process referred to in the art as "veneering"). These methods are disclosed in, e.g., Jones et al., Nature 321:522 525 (1986); Morrison et al., Proc. Natl. Acad. Sci., USA, 81:6851 6855 (1984); Morrison and Oi, Adv. Immunol., 44:65 92 (1988); Verhoeyer et al., Science 239:1534 1536 (1988); Padlan, Molec. Immun. 28:489 498 (1991); Padlan, Molec. Immunol. 31(3):169 217 (1994); and Kettleborough, C. A. et al., Protein Eng. 4(7):773 83 (1991) each of which is incorporated herein by reference in its entirety.

[0132] CDR grafting involves introducing one or more of the six CDRs from the mouse heavy and light chain variable Ig domains into the appropriate framework regions of a human variable Ig domain. This technique (Riechmann, L., et al., Nature 332, 323 (1988)), utilizes the conserved framework regions (FR1-FR4) as a scaffold to support the CDR loops which are the primary contacts with antigen. A significant disadvantage of CDR grafting, however, is that it can result in a humanized antibody that has a substantially lower binding affinity than the original mouse antibody, because amino acids of the framework regions can contribute to antigen binding, and because amino acids of the CDR loops can influence the association of the two variable Ig domains. To maintain the affinity of the humanized monoclonal antibody, the CDR grafting technique can be improved by choosing human framework regions that most closely resemble the framework regions of the original mouse antibody, and by site-directed mutagenesis of single amino acids within the framework or CDRs aided by computer modeling of the antigen binding site (e.g., Co, M. S., et al. (1994), J. Immunol. 152, 2968-2976)

[0133] One method of humanizing antibodies comprises aligning the non-human heavy and light chain sequences to human heavy and light chain sequences, selecting and replacing the non-human framework with a human framework based on such alignment, molecular modeling to predict the conformation of the humanized sequence and comparing to the conformation of the parent antibody. This process is followed by repeated back mutation of residues in the CDR region which disturb the structure of the CDRs until the predicted conformation of the humanized sequence model closely approximates the conformation of the non-human CDRs of the parent non-human antibody. Such humanized antibodies may be further derivatized to facilitate uptake and clearance, e.g., via Ashwell receptors (See, e.g., U.S. Pat. Nos. 5,530,101 and 5,585,089).

[0134] A number of humanizations of mouse monoclonal antibodies by rational design have been reported (See, for example, U.S. Patent Application Publication No. 2002/0091240 published Jul. 11, 2002, WO 92/11018 and U.S. Pat. No. 5,693,762, U.S. Pat. No. 5,766,866).

Human EngineeredTM Antibodies

[0135] The phrase "Human EngineeredTM antibody" refers to an antibody derived from a non-human antibody, typically

a rodent monoclonal antibody or possibly a chimeric antibody. Human EngineeringTM of antibody variable domains has been described by Studnicka [See, e.g., Studnicka et al. U.S. Pat. No. 5,766,886; Studnicka et al. Protein Engineering, 7: 805-814 (1994)] as a method for reducing immunogenicity while maintaining binding activity of antibody molecules. According to the method, each variable region amino acid has been assigned a risk of substitution. Amino acid substitutions are distinguished by one of three risk categories: (1) low risk changes are those that have the greatest potential for reducing immunogenicity with the least chance of disrupting antigen binding; (2) moderate risk changes are those that would further reduce immunogenicity, but have a greater chance of affecting antigen binding or protein folding; (3) high risk residues are those that are important for binding or for maintaining antibody structure and carry the highest risk that antigen binding or protein folding will be affected. Due to the three-dimensional structural role of prolines, modifications at prolines are generally considered to be at least moderate risk changes, even if the position is typically a low risk position.

[0136] Variable regions of the light and heavy chains of a rodent antibody can be Human Engineered™ by substituting human amino acids at positions determined to be unlikely to adversely effect either antigen binding or protein folding, but likely to reduce immunogenicity in a human environment. Although any human variable region can be used, including an individual VH or VL sequence or a human consensus VH or VL sequence or an individual or consensus human germline sequence, generally a human sequence with highest identity or homology to the rodent sequence is used to minimize the number of substitutions. The amino acid residues at any number of the low risk positions, or at all of the low risk positions, can be changed. For example, at each low risk position where the aligned murine and human amino acid residues differ, an amino acid modification is introduced that replaces the rodent residue with the human residue. In addition, the amino acid residues at any number or all of the moderate risk positions can be changed. In some embodiments, all of the low and moderate risk positions are changed from rodent to human sequence.

[0137] Synthetic genes containing modified heavy and/or light chain variable regions are constructed and linked to human γ heavy chain and/or kappa light chain constant regions. Any human heavy chain and light chain constant regions of any class or subclass may be used in combination with the Human EngineeredTM antibody variable regions.

Antibodies from Transgenic Animals Engineered to Contain Human Immunoglobulin Loci

[0138] Antibodies to hepcidin can also be produced using transgenic animals that have no endogenous immunoglobulin production and are engineered to contain human immunoglobulin loci. For example, WO 98/24893 discloses transgenic animals having a human Ig locus wherein the animals do not produce functional endogenous immunoglobulins due to the inactivation of endogenous heavy and light chain loci. Transgenic non-primate mammalian hosts capable of mounting an immune response to an immunogen, wherein the antibodies have primate constant and/or variable regions, and wherein the endogenous immunoglobulin encoding loci are substituted or inactivated have also been discussed. WO 96/30498 discloses the use of the Cre/Lox system to modify the immunoglobulin locus in a mammal, such as to replace all or a portion of the constant or variable region to form a modified

antibody molecule. WO 94/02602 discloses non-human mammalian hosts having inactivated endogenous Ig loci and functional human Ig loci. U.S. Pat. No. 5,939,598 discloses methods of making transgenic mice in which the mice lack endogenous heavy chains, and express an exogenous immunoglobulin locus comprising one or more xenogeneic constant regions.

[0139] Using a transgenic animal described above, an immune response can be produced to a selected antigenic molecule, and antibody producing cells can be removed from the animal and used to produce hybridomas that secrete human-derived monoclonal antibodies. Immunization protocols, adjuvants, and the like are known in the art, and are used in immunization of, for example, a transgenic mouse as described in WO 96/33735. The monoclonal antibodies can be tested for the ability to inhibit or neutralize the biological activity or physiological effect of the corresponding protein. [0140] See also Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and U.S. Pat. No. 5,591,669, U.S. Pat. No. 5,589,369, U.S. Pat. No. 5,545,807; and U.S. Patent Application Publication No. 2002/0199213. U.S. Patent Application Publication No. 2003/0092125 describes methods for biasing the immune response of an animal to the desired epitope. Human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).

Antibody Production by Phage Display Techniques

[0141] The development of technologies for making repertoires of recombinant human antibody genes, and the display of the encoded antibody fragments on the surface of filamentous bacteriophage, has provided another means for generating human-derived antibodies. Phage display is described in e.g., Dower et al., WO 91/17271, McCafferty et al., WO 92/01047, and Caton and Koprowski, Proc. Natl. Acad. Sci. USA, 87:6450-6454 (1990), each of which is incorporated herein by reference in its entirety. The antibodies produced by phage technology are usually produced as antigen binding fragments, e.g. Fv or Fab fragments, in bacteria and thus lack effector functions. Effector functions can be introduced by one of two strategies: The fragments can be engineered either into complete antibodies for expression in mammalian cells, or into bispecific antibody fragments with a second binding site capable of triggering an effector function.

[0142] Typically, the Fd fragment (V_H - C_H 1) and light chain (V_L - C_L) of antibodies are separately cloned by PCR and recombined randomly in combinatorial phage display libraries, which can then be selected for binding to a particular antigen. The antibody fragments are expressed on the phage surface, and selection of Fv or Fab (and therefore the phage containing the DNA encoding the antibody fragment) by antigen binding is accomplished through several rounds of antigen binding and re-amplification, a procedure termed panning. Antibody fragments specific for the antigen are enriched and finally isolated.

[0143] Phage display techniques can also be used in an approach for the humanization of rodent monoclonal antibodies, called "guided selection" (see Jespers, L. S., et al., Bio/Technology 12, 899-903 (1994)). For this, the Fd fragment of the mouse monoclonal antibody can be displayed in combination with a human light chain library, and the resulting hybrid Fab library may then be selected with antigen. The mouse Fd fragment thereby provides a template to guide the

selection. Subsequently, the selected human light chains are combined with a human Fd fragment library. Selection of the resulting library yields entirely human Fab.

[0144] A variety of procedures have been described for deriving human antibodies from phage-display libraries (See, for example, Hoogenboom et al., *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581-597 (1991); U.S. Pat. Nos. 5,565,332 and 5,573,905; Clackson, T., and Wells, J. A., *TIBTECH*, 12, 173-184 (1994)). In particular, in vitro selection and evolution of antibodies derived from phage display libraries has become a powerful tool (See Burton, D. R., and Barbas III, C. F., *Adv. Immunol.*, 57, 191-280 (1994); and, Winter, G., et al., *Annu. Rev. Immunol.*, 12, 433-455 (1994); U.S. Patent Application Publication No. 2003/0190317 published Oct. 9, 2003 and U.S. Pat. No. 6,054,287; U.S. Pat. No. 5,877,293.

[0145] Watkins, "Screening of Phage-Expressed Antibody Libraries by Capture Lift," *Methods in Molecular Biology, Antibody Phage Display: Methods and Protocols,* 178: 187-193, and U.S. Patent Application Publication No. 2003/0044772 published Mar. 6, 2003 describes methods for screening phage-expressed antibody libraries or other binding molecules by capture lift, a method involving immobilization of the candidate binding molecules on a solid support.

Antibody Fragments

[0146] As noted above, antibody fragments comprise a portion of an intact full length antibody, or an antigen binding or variable region of the intact antibody, and include linear antibodies and multispecific antibodies formed from antibody fragments. Nonlimiting examples of antibody fragments include Fab, Fab', F(ab')2, Fv, Fd, domain antibody (dAb), complementarity determining region (CDR) fragments, single-chain antibodies (scFv), single chain antibody fragments, diabodies, triabodies, tetrabodies, minibodies, linear antibodies, chelating recombinant antibodies, tribodies or bibodies, intrabodies, nanobodies, small modular immunopharmaceuticals (SMIPs), an antigen-binding-domain immunoglobulin fusion protein, a camelized antibody, a VHH containing antibody, or muteins or derivatives thereof, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide, such as a CDR sequence, as long as the antibody retains the desired biological activity. Such antigen fragments may be produced by the modification of whole antibodies or synthesized de novo using recombinant DNA technologies or peptide synthesis.

[0147] The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993).

[0148] "Single-chain Fv" or "scFv" antibody fragments comprise the ${\rm V}_H$ and ${\rm V}_L$ domains of antibody, wherein these domains are present in a single polypeptide chain, and optionally comprising a polypeptide linker between the ${\rm V}_H$ and ${\rm V}_L$ domains that enables the Fv to form the desired structure for

antigen binding (Bird et al., *Science* 242:423-426, 1988, and Huston et al., *Proc. Natl. Acad. Sci. USA* 85:5879-5883, 1988). An Fd fragment consists of the V_H and C_H 1 domains. **[0149]** Additional antibody fragments include a domain antibody (dAb) fragment (Ward et al., *Nature* 341:544-546, 1989) which consists of a V_H domain.

[0150] "Linear antibodies" comprise a pair of tandem Fd segments $(V_H - C_H 1 - V_H - C_H 1)$ which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific (Zapata et al., *Protein Eng.*, 8:1057-62 (1995)).

[0151] A "minibody" consisting of scFv fused to CH3 via a peptide linker (hingeless) or via an IgG hinge has been described in Olafsen, et al., *Protein Eng. Des. Sel.*, 2004 April; 17(4):315-23.

[0152] The term "maxibody" refers to bivalent scFvs covalently attached to the Fc region of an immunoglobulin, see, for example, Fredericks et al, *Protein Engineering, Design & Selection*, 17:95-106 (2004) and Powers et al., *Journal of Immunological Methods*, 251:123-135 (2001).

[0153] Functional heavy-chain antibodies devoid of light chains are naturally occurring in certain species of animals, such as nurse sharks, wobbegong sharks and Camelidae, such as camels, dromedaries, alpacas and llamas. The antigenbinding site is reduced to a single domain, the VH_H domain, in these animals. These antibodies form antigen-binding regions using only heavy chain variable region, i.e., these functional antibodies are homodimers of heavy chains only having the structure H₂L₂ (referred to as "heavy-chain antibodies" or "HCAbs"). Camelized $\mathbf{V}_{H\!H}$ reportedly recombines with IgG2 and IgG3 constant regions that contain hinge, CH2, and CH3 domains and lack a CH1 domain. Classical V_H -only fragments are difficult to produce in soluble form, but improvements in solubility and specific binding can be obtained when framework residues are altered to be more VH_H-like. (See, e.g., Reichman, et al., J. Immunol. Methods, 1999, 231:25-38.) Camelized $V_{H\!H}$ domains have been found to bind to antigen with high affinity (Desmyter et al., J. Biol. Chem. 276:26285-90, 2001) and possess high stability in solution (Ewert et al., Biochemistry 41:3628-36, 2002). Methods for generating antibodies having camelized heavy chains are described in, for example, in U.S. Patent Application Publication Nos. 2005/0136049 and 2005/0037421. Alternative scaffolds can be made from human variable-like domains that more closely match the shark V-NAR scaffold and may provide a framework for a long penetrating loop structure.

[0154] Because the variable domain of the heavy-chain antibodies is the smallest fully functional antigen-binding fragment with a molecular mass of only 15 kDa, this entity is referred to as a nanobody (Cortez-Retamozo et al., Cancer Research 64:2853-57, 2004). A nanobody library may be generated from an immunized dromedary as described in Conrath et al., (Antimicrob Agents Chemother, 45: 2807-12, 2001).

[0155] Intrabodies are single chain antibodies which demonstrate intracellular expression and can manipulate intracellular protein function (Biocca, et al., EMBO J. 9:101-108, 1990; Colby et al., *Proc Natl Acad Sci USA*. 101:17616-21, 2004). Intrabodies, which comprise cell signal sequences which retain the antibody contruct in intracellular regions, may be produced as described in Mhashilkar et al (*EMBO J* 14:1542-51, 1995) and Wheeler et al. (*FASEB J*. 17:1733-5. 2003). Transbodies are cell-permeable antibodies in which a protein transduction domains (PTD) is fused with single

chain variable fragment (scFv) antibodies Heng et al., (*Med Hypotheses.*, 64:1105-8, 2005).

[0156] Further contemplated are antibodies that are SMIPs or binding domain immunoglobulin fusion proteins specific for target protein. These constructs are single-chain polypeptides comprising antigen binding domains fused to immunoglobulin domains necessary to carry out antibody effector functions. See e.g., WO03/041600, U.S. Patent Application Publication No. 2003/0133939 and US Patent Application Publication No. 2003/0118592.

Multivalent Antibodies

[0157] In some embodiments, it may be desirable to generate multivalent or even a multispecific (e.g. bispecific, trispecific, etc.) monoclonal antibody. Such antibody may have binding specificities for at least two different epitopes of the target antigen, or alternatively it may bind to two different molecules, e.g. to the target antigen and to a cell surface protein or receptor. For example, a bispecific antibody may include an arm that binds to the target and another arm that binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g., CD2 or CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the target-expressing cell. As another example, bispecific antibodies may be used to localize cytotoxic agents to cells which express target antigen. These antibodies possess a targetbinding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-60, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Multispecific antibodies can be prepared as full length antibodies or antibody fragments.

[0158] Additionally, the anti-hepcidin antibodies disclosed herein can also be constructed to fold into multivalent forms, which may improve binding affinity, specificity and/or increased half-life in blood. Multivalent forms of anti-hepcidin antibodies can be prepared by techniques known in the art. [0159] Bispecific or multispecific antibodies include crosslinked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques. Another method is designed to make tetramers by adding a streptavidin-coding sequence at the C-terminus of the scFv. Streptavidin is composed of four subunits, so when the scFv-streptavidin is folded, four subunits associate to form a tetramer (Kipriyanov et al., Hum Antibodies Hybridomas 6(3): 93-101 (1995), the disclosure of which is incorporated herein by reference in its entirety). [0160] According to another approach for making bispecific antibodies, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. One interface comprises at least a part of the C_H 3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the

yield of the heterodimer over other unwanted end-products such as homodimers. See WO 96/27011 published Sep. 6, 1996.

[0161] Techniques for generating bispecific or multispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific or trispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Better et al., Science 240: 1041-1043 (1988) disclose secretion of functional antibody fragments from bacteria (see, e.g., Better et al., Skerra et al. Science 240: 1038-1041 (1988)). For example, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies (Carter et al., Bio/Technology 10:163-167 (1992); Shalaby et al., J. Exp. Med., 175:217-225 (1992)).

[0162] Shalaby et al., *J. Exp. Med.*, 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

[0163] Various techniques for making and isolating bispecific or multispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers, e.g. GCN4. (See generally Kostelny et al., *J. Immunol.* 148(5):1547-1553 (1992).) The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.

[0164] Diabodies, described above, are one example of a bispecific antibody. See, for example, Hollinger et al., *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993). Bivalent diabodies can be stabilized by disulfide linkage.

[0165] Stable monospecific or bispecific Fv tetramers can also be generated by noncovalent association in $(scFv_2)_2$ configuration or as bis-tetrabodies. Alternatively, two different scFvs can be joined in tandem to form a bis-scFv.

[0166] Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., *J. Immunol.* 152: 5368 (1994). One approach has been to link two scFv antibodies with linkers or disulfide bonds (Mallender and Voss, *J. Biol. Chem.*, 269:199-2061994, WO 94/13806, and U.S. Pat. No. 5,989,830, the disclosures of which are incorporated herein by reference in their entireties).

[0167] Alternatively, the bispecific antibody may be a "linear antibody" produced as described in Zapata et al. *Protein Eng.* 8(10):1057-1062 (1995). Briefly, these antibodies comprise a pair of tandem Fd segments $(V_H - C_H 1 - V_H - C_H 1)$ which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.

[0168] Antibodies with more than two valencies are also contemplated. For example, trispecific antibodies can be prepared. (Tutt et al., *J. Immunol* 147:60 (1991)).

[0169] A "chelating recombinant antibody" is a bispecific antibody that recognizes adjacent and non-overlapping epitopes of the target antigen, and is flexible enough to bind to both epitopes simultaneously (Neri et al., *J Mol Biol.* 246: 367-73, 1995).

[0170] Production of bispecific Fab-scFv ("bibody") and trispecific Fab-(scFv)(2) ("tribody") are described in Schoonjans et al. (*J Immunol.* 165:7050-57, 2000) and Willems et al. (*J Chromatogr B Analyt Technol Biomed Life Sci.* 786:161-76, 2003). For bibodies or tribodies, a scFv molecule is fused to one or both of the VL-CL (L) and VH-CH $_1$ (Fd) chains, e.g., to produce a tribody two scFvs are fused to C-term of Fab while in a bibody one scFv is fused to C-term of Fab.

[0171] In yet another method, dimers, trimers, and tetramers are produced after a free cysteine is introduced in the parental protein. A peptide-based cross linker with variable numbers (two to four) of maleimide groups was used to cross link the protein of interest to the free cysteines (Cochran et al., Immunity 12(3): 241-50 (2000), the disclosure of which is incorporated herein in its entirety).

Specific Binding Agents

[0172] Other hepcidin-specific binding agents can be prepared, for example, based on CDRs from an antibody or by screening libraries of diverse peptides or organic chemical compounds for peptides or compounds that exhibit the desired binding properties for human hepcidin. Hepcidin specific binding agent include peptides containing amino acid sequences that are at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to one or more CDRs of murine antibody Ab43 (SEQ ID NOs: 16-21); murine antibody 2.7 (SEO ID NOs: 28-33); murine antibody 2.41 (SEQ ID NOs: 40-45), rat antibody R9 (SEQ ID NOs: 52-57) or human antibody 1C9 (SEQ ID NOs: 111-116), human antibody 3B3 (SEQ ID NOs: 121-126), human antibody 4E1 (SEQ ID NOs: 131-136), human antibody 7A3 (SEQ ID NOs: 141-46), human antibody 9D12 (SEQ ID NOs: 151-156), human antibody 12B9 (SEQ ID NOs: 161-166), human antibody 15E1 (SEQ ID NOs: 171-176), human antibody 18B11 (SEQ ID NOs: 334-339), human antibody 18D8 (SEQ ID NOs: 314-319), human antibody 19B8 (SEQ ID NOs: 343-349), human antibody 19C1 (SEQ ID NOs: 324-329), human antibody 19D12 (SEQ ID NOs: 294-299), human antibody 19H6 (SEQ ID NOs: 304-309), human antibody 20E12 (SEQ ID NOs: 353-359), human antibody 22F12 (SEQ ID NOs: 363-369), human antibody 22H10 (SEQ ID NOs: 373-379), human antibody 23A11 (SEQ ID NOs: 383-389), human antibody 23F11 (SEQ ID NOs: 181-186), human antibody 24E4 (SEQ ID NOs: 393-399), human antibody 26F11 (SEQ ID NOs: 191-196), or human antibody 1S1 (SEQ ID NOs: 203-205 and 131-133) or human antibody 1S2 (SEQ ID NOs: 214-216 and 144-146) or human antibody 1S3 (SEQ ID NOs: 225-227 and 164-166) or human antibody 1S4 (SEQ ID NOs: 236-238 and 174-176) or human antibody 1S5 (SEQ ID NO: 247-249 and 184-186.

[0173] Hepcidin-specific binding agents also include peptibodies. The term "peptibody" refers to a molecule comprising an antibody Fc domain attached to at least one peptide. The production of peptibodies is generally described in PCT publication WO 00/24782, published May 4, 2000. Any of these peptides may be linked in tandem (i.e., sequentially), with or without linkers. Peptides containing a cysteinyl residue may be cross-linked with another Cys-containing peptide, either or both of which may be linked to a vehicle. Any peptide having more than one Cys residue may form an intrapeptide disulfide bond, as well. Any of these peptides may be derivatized, for example, the carboxyl terminus may be capped with an amino group, cysteines may be cappe, or amino acid residues may substituted by moieties other than amino acid residues (see, e.g., Bhatnagar et al., J. Med. Chem., 39: 3814-9 (1996), and Cuthbertson et al., J. Med. Chem., 40: 2876-82 (1997), which are incorporated by reference herein in their entirety). The peptide sequences may be optimized, analogous to affinity maturation for antibodies, or otherwise altered by alanine scanning or random or directed mutagenesis followed by screening to identify the best binders. Lowman, Ann. Rev. Biophys. Biomol. Struct., 26: 401-24 (1997). Various molecules can be inserted into the specific binding agent structure, e.g., within the peptide portion itself or between the peptide and vehicle portions of the specific binding agents, while retaining the desired activity of specific binding agent. One can readily insert, for example, molecules such as an Fc domain or fragment thereof, polyethylene glycol or other related molecules such as dextran, a fatty acid, a lipid, a cholesterol group, a small carbohydrate, a peptide, a detectable moiety as described herein (including fluorescent agents, radiolabels such as radioisotopes), an oligosaccharide, oligonucleotide, a polynucleotide, interference (or other) RNA, enzymes, hormones, or the like. Other molecules suitable for insertion in this fashion will be appreciated by those skilled in the art, and are encompassed within the scope of the invention. This includes insertion of for example, a desired molecule in between two consecutive amino acids, optionally joined by a suitable linker.

[0174] The development of hepcidin peptibodies is also contemplated. The interaction of a protein ligand with its receptor often takes place at a relatively large interface. However, as demonstrated for human growth hormone and its receptor, only a few key residues at the interface contribute to most of the binding energy. Clackson et al., *Science* 267: 383-6 (1995). The bulk of the protein ligand merely displays the binding epitopes in the right topology or serves functions unrelated to binding. Thus, molecules of only "peptide" length (generally 2 to 40 amino acids) can bind to the receptor protein of a given large protein ligand. Such peptides may mimic the bioactivity of the large protein ligand ("peptide agonists") or, through competitive binding, inhibit the bioactivity of the large protein ligand ("peptide antagonists").

[0175] Phage display technology has emerged as a powerful method in identifying such peptide agonists and antagonists. See, for example, Scott et al. *Science*, 249: 386 (1990); Devlin et al., *Science* 249: 404 (1990); U.S. Pat. No. 5,223, 409, issued Jun. 29, 1993; U.S. Pat. No. 5,733,731, issued Mar. 31, 1998; U.S. Pat. No. 5,498,530, issued Mar. 12, 1996; U.S. Pat. No. 5,432,018, issued Jul. 11, 1995; U.S. Pat. No. 5,338,665, issued Aug. 16, 1994; U.S. Pat. No. 5,922,545,

issued Jul. 13, 1999; WO 96/40987, published Dec. 19, 1996; and WO 98/15833, published Apr. 16, 1998 (each of which is incorporated by reference in its entirety). In peptide phage display libraries, random peptide sequences can be displayed by fusion with coat proteins of filamentous phage. The displayed peptides can be affinity-eluted against an antibodyimmobilized extracellular domain of a receptor, if desired. The retained phage may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides may be sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla et al., Science 276: 1696-9 (1997), in which two distinct families were identified. The peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created and screened to further optimize the sequence of the best binders. Lowman, Ann. Rev. Biophys. Biomol. Struct., 26: 401-24 (1997).

[0176] Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein ligands. In such an analysis, the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide may be designed. See, e.g., Takasaki et al., *Nature Biotech* 15: 1266-70 (1997). These analytical methods may also be used to investigate the interaction between a receptor protein and peptides selected by phage display, which may suggest further modification of the peptides to increase binding affinity.

[0177] Other methods compete with phage display in peptide research. A peptide library can be fused to the carboxyl terminus of the lac repressor and expressed in E. coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, these and related methods are collectively referred to as "E. coli display." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively referred to as "ribosome display." Other methods employ chemical linkage of peptides to RNA. See, for example, Roberts and Szostak, Proc. Natl. Acad. Sci. USA, 94: 12297-303 (1997). Hereinafter, this and related methods are collectively referred to as "RNA-peptide screening." Chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements. Both biological and chemical methods are reviewed in Wells and Lowman, Curr. Opin. Biotechnol., 3: 355-62 (1992).

[0178] Conceptually, one may discover peptide mimetics of any protein using phage display and the other methods mentioned above. These methods have been used for epitope mapping, for identification of critical amino acids in protein-protein interactions, and as leads for the discovery of new therapeutic agents. See, e.g., Cortese et al., *Curr. Opin. Biotech.*, 7: 616-21 (1996). Peptide libraries are now being used

most often in immunological studies, such as epitope mapping. See Kreeger, *The Scientist*, 10(13):19-20 (1996).

[0179] Sources for compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of the hepcidin polypeptides described herein include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

[0180] Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

[0181] The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science* 282:63-68 (1998).

[0182] Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.*, 9(3):205-23 (1998); Hruby et al., *Curr. Opin. Chem. Biol.*, 1(1):114-19 (1997); Dorner et al., *Bioorg. Med. Chem.*, 4(5):709-15 (1996) (alkylated dipeptides).

[0183] Hepcidin-specific binding agents also include scaffolding proteins, as described by Hays et al. *Trends In Biotechnology*, 23(10):514-522 (2005), herein incorporated by reference in its entirety, and Avimer protein technology, as described in U.S. Publication Nos. 2006-0286603 and 2006-0223114, both herein incorporated by reference in their entireties.

Screening Methods for Antibodies or Specific Binding Agents

[0184] Methods of identifying antibodies or specific binding agents which bind hepcidin and/or which cross-block exemplary antibodies described herein, and/or which inhibit hepcidin activity are also provided.

[0185] Antibodies or specific binding agents may be screened for binding affinity by methods known in the art. For example, gel-shift assays, Western blots, radiolabeled competition assay, co-fractionation by chromatography, co-precipitation, cross linking, ELISA, and the like may be used, which are described in, for example, Current Protocols in Molecular Biology (1999) John Wiley & Sons, NY, which is incorporated herein by reference in its entirety.

[0186] To initially screen for antibodies or specific binding agents which bind to the desired epitope on the target antigen, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Labora-

tory, Ed Harlow and David Lane (1988), can be performed. Routine competitive binding assays may also be used, in which the unknown antibody is characterized by its ability to inhibit binding of target to a target-specific antibody described herein. Intact antigen, fragments thereof such as the extracellular domain, or linear epitopes can be used. Epitope mapping is described in Champe et al., J. Biol. Chem. 270: 1388-1394 (1995). Competitive binding assays may also be used to determine the off-rate of an antibody-antigen interaction. For example, one example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., ³H or ¹²⁵I), or fragment or variant thereof, with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen. The binding offrates can be determined from the data by scatchard plot analy-

[0187] In one variation of an in vitro binding assay, method is provided comprising (a) contacting an immobilized hepcidin with a candidate antibody or specific binding agent and (b) detecting binding of the candidate antibody or specific binding agent to the hepcidin. In an alternative embodiment, the candidate antibody or specific binding agent is immobilized and binding of hepcidin is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interaction such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the nonimmobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

[0188] In some embodiments, antibodies or specific binding agents that inhibit or neutralize human hepcidin activity may be identified by contacting hepcidin with the antibody (or specific binding agent), comparing hepcidin activity in the presence and absence of the test antibody (or specific binding agent), and determining whether the presence of the antibody (or specific binding agent) decreases activity of the hepcidin. The biological activity of a particular antibody, or specific binding agent, or combination of antibodies or specific binding agents, may be evaluated in vivo using a suitable animal model, including any of those described herein.

[0189] In some embodiments, high throughput screening (HTS) assays to identify antibodies that interact with or inhibit biological activity (i.e., inhibit phosphorylation, dimerization, ligand induced-receptor activation, or intracellular signaling, etc.) of target antigen are also contemplated. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated to investigate the interaction between target antigen and its binding partners. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property.

[0190] In another embodiment, high throughput screening for antibody fragments or CDRs with 1, 2, 3 or more modi-

fications to amino acids within the CDRs having suitable binding affinity to a target antigen polypeptide is employed.

Production of Antibody Variants and Derivatives

[0191] The anti-hepcidin antibodies disclosed herein can readily be modified by techniques well-known to one of ordinary skill in the art. Potential mutations include insertion, deletion or substitution of one or more residues. In some embodiment, insertions or deletions are in the range of about 1 to 5 amino acids, in the range of about 1 to 3 amino acids, or in the range of about 1 or 2 amino acids.

[0192] Deletion variants are polypeptides wherein at least one amino acid residue of any amino acid sequence is removed. Deletions can be effected at one or both termini of the protein, or with removal of one or more residues within (i.e., internal to) the polypeptide. Methods for preparation of deletion variants are routine in the art. See, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Guide, Vols 1-3, Cold Spring Harbor Press, the disclosure of which is incorporated herein by reference in its entirety.

[0193] Amino acid sequence insertions include aminoand/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing hundreds or more residues, as well as internal sequence insertions of one or more amino acids. As with any of the different variant types described herein, insertional variants can be designed such that the resulting polypeptide retains the same biological properties or exhibits a new physical, chemical and/or biological property not associated with the parental polypeptide from which it was derived. Methods for preparation of insertion variants are also routine and well known in the art (Sambrook et al., supra).

[0194] Fusion proteins comprising a polypeptide comprising an anti-hepcidin antibody described herein, and a heterologous polypeptide, are a specific type of insertion variant contemplated herein. Nonlimiting examples of heterologous polypeptides which can be fused to polypeptides of interest include proteins with long circulating half-life, such as, but not limited to, immunoglobulin constant regions (e.g., Fc region); marker sequences that permit identification of the polypeptide of interest; sequences that facilitate purification of the polypeptide of interest; and sequences that promote formation of multimeric proteins.

[0195] Methods of making antibody fusion proteins are well known in the art. See, e.g., U.S. Pat. No. 6,306,393, the disclosure of which is incorporated herein by reference in its entirety. In certain embodiments, fusion proteins are produced which may include a flexible linker, which connects the chimeric scFv antibody to the heterologous protein moiety. Appropriate linker sequences are those that do not affect the ability of the resulting fusion protein to be recognized and bind the epitope specifically bound by the V domain of the protein (see, e.g., WO 98/25965, the disclosure of which is incorporated herein by reference in its entirety).

[0196] Substitution variants are those in which at least one residue in the polypeptide amino acid sequence is removed and a different residue is inserted in its place. Modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. In certain embodiments, substitution variants are designed, i.e.,

one or more specific (as opposed to random) amino acid residues are substituted with a specific amino acid residue. Typical changes of these types include conservative substitutions and/or substitution of one residue for another based on similar properties of the native and substituting residues.

[0197] Conservative substitutions are shown in Table 1. The most conservative substitution is found under the heading of "preferred substitutions." If such substitutions result in no change in biological activity, then more substantial changes may be introduced and the products screened.

TABLE 1

Original	Exemplary	Preferred Residue Substitutions
Ala (A)	val; leu; ile	val
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; asp, lys; gln	arg
Asp (D)	glu; asn	glu
Cys (C)	ser; ala	ser
Gln (Q)	asn; glu	asn
Glu (E)	asp; gln	asp
Gly (G)	ala	
His (H)	asn; gln; lys; arg	
Ile (I)	leu; val; met; ala;	leu
	phe; norleucine	
Leu (L)	norleucine; ile; val;	ile
	met; ala; phe	
Lys (K)	arg; gln; asn	arg
Met (M)	leu; phe; ile	leu
Phe (F)	leu; val; ile; ala; tyr	
Pro (P)	ala	
Ser (S)	thr	
Thr (T)	ser	ser
Trp (W)	tyr; phe	tyr
Tyr (Y)	trp; phe; thr; ser	phe
Val (V)	ile; leu; met; phe;	leu
	ala; norleucine	

[0198] Amino acid residues which share common sidechain properties are often grouped as follows.

[0199] (1) hydrophobic: norleucine, met, ala, val, leu, ile;

[0200] (2) neutral hydrophilic: cys, ser, thr;

[0201] (3) acidic: asp, glu;

[0202] (4) basic: asn, gln, his, lys, arg;

[0203] (5) residues that influence chain orientation: gly, pro; and

[0204] (6) aromatic: trp, tyr, phe.

Antibody Variants

[0205] In certain instances, antibody variants are prepared with the intent to modify those amino acid residues which are directly involved in epitope binding. In other embodiments, modification of residues which are not directly involved in epitope binding or residues not involved in epitope binding in any way, is desirable, for purposes discussed herein. Mutagenesis within any of the CDR regions and/or framework regions is contemplated.

[0206] In order to determine which antibody amino acid residues are important for epitope recognition and binding, alanine scanning mutagenesis can be performed to produce substitution variants. See, for example, Cunningham et al., *Science*, 244:1081-1085 (1989), the disclosure of which is incorporated herein by reference in its entirety. In this method, individual amino acid residues are replaced one-at-a-time with an alanine residue and the resulting anti-hepcidin antibody is screened for its ability to bind its specific epitope relative to the unmodified antibody. Modified antibodies with

reduced binding capacity are sequenced to determine which residue was changed, indicating its significance in binding or biological properties.

[0207] Substitution variants of antibodies can be prepared by affinity maturation wherein random amino acid changes are introduced into the parent antibody sequence. See, for example, Ouwehand et al., Vox Sang 74 (Suppl 2):223-232, 1998; Rader et al., Proc. Natl. Acad. Sci. USA 95:8910-8915, 1998; Dall'Acqua et al., Curr. Opin. Struct. Biol., 8:443-450, 1998, the disclosures of which are incorporated herein by reference in their entireties. Affinity maturation involves preparing and screening the anti-hepcidin antibodies, or variants thereof and selecting from the resulting variants those that have modified biological properties, such as increased binding affinity relative to the parent anti-hepcidin antibody. A convenient way for generating substitutional variants is affinity maturation using phage display. Briefly, several hypervariable region sites are mutated to generate all possible amino substitutions at each site. The variants thus generated are expressed in a monovalent fashion on the surface of filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity). See e.g., WO 92/01047, WO 93/112366, WO 95/15388 and WO 93/19172.

[0208] Current antibody affinity maturation methods belong to two mutagenesis categories: stochastic and nonstochastic. Error prone PCR, mutator bacterial strains (Low et al., *J. Mol. Biol.* 260, 359-68, 1996), and saturation mutagenesis (Nishimiya et al., *J. Biol. Chem.* 275:12813-20, 2000; Chowdhury, P. S. *Methods Mol. Biol.* 178, 269-85, 2002) are typical examples of stochastic mutagenesis methods (Rajpal et al., *Proc Natl Acad Sci USA.* 102:8466-71, 2005). Nonstochastic techniques often use alanine-scanning or site-directed mutagenesis to generate limited collections of specific muteins. Some methods are described in further detail below.

[0209] Affinity maturation via panning methods—Affinity maturation of recombinant antibodies is commonly performed through several rounds of panning of candidate antibodies in the presence of decreasing amounts of antigen. Decreasing the amount of antigen per round selects the antibodies with the highest affinity to the antigen thereby yielding antibodies of high affinity from a large pool of starting material. Affinity maturation via panning is well known in the art and is described, for example, in Huls et al. (*Cancer Immunol Immunother*. 50:163-71, 2001). Methods of affinity maturation using phage display technologies are described elsewhere herein and known in the art (see e.g., Daugherty et al., *Proc Natl Acad Sci USA*. 97:2029-34, 2000).

[0210] Look-through mutagenesis—Look-through mutagenesis (LTM) (Rajpal et al., *Proc Natl Acad Sci USA*. 102:8466-71, 2005) provides a method for rapidly mapping the antibody-binding site. For L™, nine amino acids, representative of the major side-chain chemistries provided by the 20 natural amino acids, are selected to dissect the functional side-chain contributions to binding at every position in all six CDRs of an antibody. LTM generates a positional series of single mutations within a CDR where each "wild type" residue is systematically substituted by one of nine selected amino acids. Mutated CDRs are combined to generate combinatorial single-chain variable fragment (scFv) libraries of increasing complexity and size without becoming prohibitive

to the quantitative display of all muteins. After positive selection, clones with improved binding are sequenced, and beneficial mutations are mapped.

[0211] Error prone PCR—Error-prone PCR involves the randomization of nucleic acids between different selection rounds. The randomization occurs at a low rate by the intrinsic error rate of the polymerase used but can be enhanced by error-prone PCR (Zaccolo et al., J. Mol. Biol. 285:775-783, 1999) using a polymerase having a high intrinsic error rate during transcription (Hawkins et al., J Mol. Biol. 226:889-96, 1992). After the mutation cycles, clones with improved affinity for the antigen are selected using routine methods in the art.

[0212] Techniques utilizing gene shuffling and directed evolution may also be used to prepare and screen anti-hepcidin antibodies, or variants thereof, for desired activity. For example, Jermutus et al., Proc Natl Acad Sci USA., 98(1):75-80 (2001) showed that tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of scFvs; Fermer et al., Tumour Biol. 2004 January-April; 25(1-2):7-13 reported that use of phage display in combination with DNA shuffling raised affinity by almost three orders of magnitude. Dougherty et al., Proc Natl Acad Sci USA. 2000 Feb. 29; 97(5):2029-2034 reported that (i) functional clones occur at an unexpectedly high frequency in hypermutated libraries, (ii) gain-of-function mutants are well represented in such libraries, and (iii) the majority of the scFv mutations leading to higher affinity correspond to residues distant from the binding site.

[0213] Alternatively, or in addition, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and antigen, or to use computer software to model such contact points. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, they are subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Antibody with Modified Carbohydrate

[0214] Antibody variants can also be produced that have a modified glycosylation pattern relative to the parent antibody, for example, adding or deleting one or more of the carbohydrate moieties bound to the specific binding agent or antibody, and/or adding or deleting one or more glycosylation sites in the specific binding agent or antibody.

[0215] Glycosylation of polypeptides, including antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-Xserine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. The presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. Thus, N-linked glycosylation sites may be added to a specific binding agent or antibody by altering the amino acid sequence such that it contains one or more of these tripeptide sequences. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used. O-linked glycosylation sites may be added to a specific binding agent or antibody by inserting or substituting one or more serine or threonine residues to the sequence of the original specific binding agent or antibody.

Altered Effector Function

[0216] Cysteine residue(s) may be removed or introduced in the Fc region of an antibody or Fc-containing polypeptide, thereby eliminating or increasing interchain disulfide bond formation in this region. A homodimeric specific binding agent or antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp. Med., 176:1191-1195 (1992) and Shopes, B., J. Immunol. 148: 2918-2922 (1992). Homodimeric specific binding agents or antibodies may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research, 53:2560-2565 (1993). Alternatively, a specific binding agent or antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989).

[0217] It has been shown that sequences within the CDR can cause an antibody to bind to MHC Class II and trigger an unwanted helper T-cell response. A conservative substitution can allow the specific binding agent or antibody to retain binding activity yet reduce its ability to trigger an unwanted T-cell response. It is also contemplated that one or more of the N-terminal 20 amino acids of the heavy or light chain are removed.

[0218] In some embodiments, production of antibody molecules are contemplated with altered carbohydrate structure resulting in altered effector activity, including antibody molecules with absent or reduced fucosylation that exhibit improved ADCC activity. A variety of ways are known in the art to accomplish this. For example, ADCC effector activity is mediated by binding of the antibody molecule to the FcγRIII receptor, which has been shown to be dependent on the carbohydrate structure of the N-linked glycosylation at the Asn-297 of the CH2 domain. Non-fucosylated antibodies bind this receptor with increased affinity and trigger FcyRIII-mediated effector functions more efficiently than native, fucosylated antibodies. For example, recombinant production of nonfucosylated antibody in CHO cells in which the alpha-1,6fucosyl transferase enzyme has been knocked out results in antibody with 100-fold increased ADCC activity (Yamane-Ohnuki et al., Biotechnol Bioeng. 2004 Sep. 5; 87(5):614-22). Similar effects can be accomplished through decreasing the activity of this or other enzymes in the fucosylation pathway, e.g., through siRNA or antisense RNA treatment, engineering cell lines to knockout the enzyme(s), or culturing with selective glycosylation inhibitors (Rothman et al., Mol. Immunol. 1989 December; 26(12):1113-23). Some host cell strains, e.g. Lec13 or rat hybridoma YB2/0 cell line naturally produce antibodies with lower fucosylation levels. Shields et al., J Biol. Chem. 2002 Jul. 26; 277(30):26733-40; Shinkawa et al., J Biol. Chem. 2003 Jan. 31; 278(5):3466-73. An increase in the level of bisected carbohydrate, e.g. through recombinantly producing antibody in cells that overexpress GnTIII enzyme, has also been determined to increase ADCC activity. Umana et al., Nat. Biotechnol. 1999 February; 17(2): 176-80. It has been predicted that the absence of only one of the two fucose residues may be sufficient to increase ADCC activity. (Ferrara et al., J Biol. Chem. 2005 Dec. 5).

Other Covalent Modifications

[0219] Covalent modifications of a polypeptide, or antibody are also included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the polypeptide or antibody, if applicable. Other types of covalent modifications can be introduced by reacting targeted amino acid residues with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.

[0220] Cysteinyl residues most commonly are reacted with α -haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, .alpha.bromo- β -(5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

[0221] Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. In some embodiments, para-bromophenacyl bromide also is useful; and the reaction is performed in 0.1 M sodium cacodylate at pH 6.0.

[0222] Lysinyl and amino-terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha.-amino-containing residues include imidoesters such as methyl picolinimidate, pyridoxal phosphate, pyridoxal, chloroborohydride, trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.

[0223] Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK $_{\alpha}$ of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

[0224] The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using ¹²⁵I or ¹³¹I to prepare labeled proteins for use in radioimmunoassay.

[0225] Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R-N. dbd.C.dbd.N-R'), where R and R' are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

[0226] Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neu-

tral or basic conditions. The deamidated form of these residues falls within the scope of this invention.

[0227] Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the .alpha.-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

[0228] Another type of covalent modification involves chemically or enzymatically coupling glycosides to the specific binding agent or antibody. These procedures are advantageous in that they do not require production of the polypeptide or antibody in a host cell that has glycosylation capabilities for N- or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulf-hydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO87/05330 published 11 Sep. 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

[0229] Removal of any carbohydrate moieties present on the polypeptide or antibody may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the specific binding agent or antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the specific binding agent or antibody intact. Chemical deglycosylation is described by Hakimuddin, et al., *Arch. Biochem. Biophys.*, 259: 52 (1987) and by Edge et al., *Anal. Biochem.*, 118: 131 (1981). Enzymatic cleavage of carbohydrate moieties on a specific binding agent or antibody can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., *Meth. Enzymol.*, 138: 350 (1987).

[0230] Another type of covalent modification of an antihepcidin antibody described herein comprises linking the polypeptide, specific binding agent or antibody to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyethylated polyols, polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethylated glycerol, polyoxyalkylenes, or polysaccharide polymers such as dextran. Such methods are known in the art, see, e.g. U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192, 4,179,337, 4,766,106, 4,179,337, 4,495,285, 4,609,546 or EP 315 456.

Diagnostic Methods for Hepcidin-Related Disorders and Monitoring of Therapy with Anti-Hepcidin Antibodies

[0231] In another aspect, a method is provided of detecting human hepcidin in a sample, comprising contacting a sample from a human with any of the aforementioned antibodies under conditions that allow binding of the antibody to human hepcidin, and detecting the bound antibody. In one embodiment, a first antibody to hepcidin is immobilized on a solid support, as a capture reagent, and a second antibody to hepcidin is used as a detection reagent. In a related aspect, the amount of hepcidin in the sample is quantitated by measuring the amount of the bound antibody. The detection methods can be used in a variety of diagnostic, prognostic and monitoring

methods, including methods of diagnosing a hepcidin-related disorder, methods of differentiating an inflammatory disease from a non-inflammatory disease and methods of monitoring therapy with an anti-hepcidin antibody. In such methods, a level of hepcidin above a certain threshold is correlated with the presence of hepcidin-related disorder, such as hepcidinrelated anemia, while a level below said threshold indicates that the patient is unlikely to have hepcidin-related disorder. Similarly, a level of hepcidin above a certain threshold is correlated with the presence of an inflammatory disease, while a level below said threshold indicates that the patient is unlikely to have an inflammatory disease. In some embodiments, such methods will diagnose patients having iron deficiency anemia, anemia of inflammation or mixed anemia. For monitoring of therapy aimed at suppressing hepcidin levels, a level of hepcidin below a certain threshold indicates that the dose of hepcidin antibody is therapeutically effective, and a level above said threshold indicates that the dose of hepcidin antibody is not therapeutically effective.

[0232] Also provided are methods for diagnosing hepcidinrelated disorders, such as hepcidin-related anemia, or other diseases of hepcidin excess or hepcidin deficiency, and for monitoring the effectiveness of therapy for such a disease, including therapy with an anti-hepcidin antibody described herein. To determine the presence or absence of hepcidinrelated anemia, a biological sample from a patient is contacted with one or more of the anti-hepcidin antibodies disclosed herein under conditions and for a time sufficient to allow immunocomplexes to form. Immunocomplexes formed between an anti-hepcidin antibody and hepcidin in the biological sample are then detected. The amount of hepcidin in the sample is quantitated by measuring the amount of the immunocomplex formed between the antibody and hepcidin. Within certain methods, a biological sample is isolated from a patient and is incubated with one or more of the anti-hepcidin antibodies disclosed herein, and the level of the antibody-hepcidin complex above a certain threshold is correlated with the presence of hepcidin-related anemia, and a level below said threshold indicates that the patient is unlikely to have hepcidin-related anemia. For example, a level within the normal range indicates the patient is unlikely to have hepcidin-related anemia. Normal range of serum hepcidin is generally less than 10 ng/ml when determined by certain assays, i.e., mass spectrometry techniques described in coowned U.S. patent application Ser. No. 11/880,313 and International Publication No. WO 2008/011158, the disclosures of which are incorporated herein by reference in their entirety, but will vary depending on the assay and depending on the subset of population tested.

[0233] Also provided are methods for differentiating an inflammatory disease from a non-inflammatory disease. To determine the presence or absence of an inflammatory disease, a biological sample from a patient is contacted with one or more of the anti-hepcidin antibodies disclosed herein under conditions and for a time sufficient to allow immunocomplexes to form. Various immunoassays known in the art can be used, including but are not limited to: competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglu-

tination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. Antibodies: A Laboratory Manual (1988) by Harlow & Lane or more recent editions; Immunoassays: A Practical Approach, Oxford University Press, Gosling, J. P. (ed.) (2001) or more recent editions; and/or Current Protocols in Molecular Biology (Ausubel et al.), which is regularly updated. Examples of such assays usually involve the antibody attached to a surface or matrix, patient serum added and time allowed for a complex to form; suitable washing procedures to remove unbound complex, followed by either the addition of a second antibody to allow detection of the complex (a sandwich ELISA) or a detectable version of hepcidin to detect free hepcidin binding sites on the antibody surface (a competition ELISA). The level of hepcidin, as detected by the foregoing methods, above a certain threshold is correlated with the presence of an inflammatory disease, and a level below said threshold indicates that the patient is unlikely to have an inflammatory disease. A patient is unlikely to have an inflammatory disease when the hepcidin level is within the normal range. A patient is likely to have an inflammatory disease when the hepcidin level exceeds the normal range, for example 20 ng/ml, in particular, when the level is between 20 and 1000 ng/ml. Exemplary hepcidinrelated inflammatory diseases include anemia of cancer, anemia of chronic disease, anemia of inflammation, chemotherapy-induced anemia, chronic kidney disease (stage I, II, III, IV or V), end stage renal disease, chronic renal failure congestive heart failure, cancer, rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, H. pyelori infection or other bacterial infections, hepatitis C, HIV, and other viral illnesses, arteriosclerosis, atherosclerosis, cirrhosis of the liver, pancreatitis, sepsis, vasculitis, iron-deficiency, hypochromic microcytic anemia and conditions with hepci-

[0234] Within other methods, a biological sample obtained from a patient is tested for the level of hepcidin. The biological sample is incubated with one or more of the anti-hepcidin antibodies disclosed herein under conditions and for a time sufficient to allow immunocomplexes to form. Immunocomplexes formed between the hepcidin and antibodies in the biological sample that specifically bind to the hepcidin are then detected. A biological sample for use within such methods may be any sample obtained from a patient that is expected to contain hepcidin. Suitable biological samples include blood, sera, plasma, urine and bone marrow. Suitable antibodies include antibodies from human cells, rodent, rabbit, goat, camel, or any other species.

[0235] The biological sample is incubated with antibodies in a reaction mixture under conditions and for a time sufficient to permit immunocomplexes to form between hepcidin and antibodies that are immunospecific for hepcidin. For example, a biological sample and one or more anti-hepcidin antibodies may be incubated at 4° C. for 24-48 hours.

[0236] Following the incubation, the reaction mixture is tested for the presence of immuno-complexes. Detection of immunocomplexes formed between an anti-hepcidin anti-

body and hepcidin present in the biological sample may be accomplished by a variety of known techniques, such as radioimmunoassays (RIA) and enzyme linked immunosorbent assays (ELISA). Suitable assays are well known in the art and are amply described in the scientific and patent literature (Harlow and Lane, 1988). Assays that may be used include, but are not limited to, the double monoclonal antibody sandwich immunoassay technique (U.S. Pat. No. 4,376, 110); monoclonal-polyclonal antibody sandwich assays (Wide L., "Solid Phase Antigen-Antibody Systems," Radioimmunoassay Methods: European Workshop Sep. 15-17 1970 Edinburgh, Kirkham and Hunter, eds., (Churchill Livingston, Edenburgh, (1971)) pp. 405-412; the "western blot" method (U.S. Pat. No. 4,452,901); immunoprecipitation of labeled ligand (Brown et al., J. Biol. Chem. 4980-4983m 1980); enzyme-linked immunosorbent assays; immunocytochemical techniques, including the use of fluorochromes (Brooks et al., Clin. Exp. Immunol., 39: 477, 1980); and neutralization of activity (Bowen-Pope et al., Science, 226:701-703, 1984). Other immunoassays include, but are not limited to, those described in U.S. Pat. Nos. 3,850,752; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; and 4,098,876.

[0237] For detection purposes, an anti-hepcidin antibody may either be labeled or unlabeled. Unlabeled antibodies may be used in agglutination assays or in combination with labeled detection reagents that bind to the immunocomplexes (e.g., anti-immunoglobulin, protein G, Protein A or a lectin and secondary antibodies, or antigen-binding fragments thereof, capable of binding to the antibodies that specifically bind to the hepcidin). If the anti-hepcidin antibody is labeled, the reporter group may be any suitable reporter group known in the art, including radioisotopes, fluorescent groups (e.g. fluorescein or rhodamine), luminescent groups, enzymes, biotin and dye particles. Labels that are themselves directly detectable include fluorescent or luminescent dyes, metals or metal chelates, electrochemical labels, radionuclides (e.g., 32P, 14C, 125I, 3H, or 131I), magnetic labels or beads (e.g., DYNABEADS), paramagnetic labels, or colorimetric labels (e.g., colloidal gold, colored glass or plastic beads). Such detectable labels may be directly conjugated to the anti-hepcidin antibody or detection reagent or may be associated with a bead or particle that is attached to the anti-hepcidin antibody or detection reagent. Labels that are detectable through binding of a labeled specific binding partner include biotin, digoxigenin, maltose, oligohistidine, 2,4-dinitrobenzene, phenylarsenate, ssDNA, or dsDNA). Indirect labels that can be indirectly detected by their production of a detectable reaction product include various enzymes well known in the art, such as alkaline phosphatase, horseradish peroxidase, β-galactosidase, xanthine oxidase, glucose oxidase or other saccharide oxidases, or luciferases, which cleave appropriate substrate to form a colored or fluorescent reaction product.

[0238] Within certain assays, an unlabeled anti-hepcidin antibody is immobilized on a solid support, for use as a "capture agent" (or reagent) that captures the hepcidin within a biological sample. The solid support may be any material known to those of ordinary skill in the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a tube, bead, particle or disc, such as glass, fiberglass, latex or a plastic material such as polyethylene, polypropylene, polystyrene or polyvinylchloride or a porous matrix. Other materials include agarose, dextran, polyacrylamide, nylon, Sepha-

dex, cellulose or polysaccharides. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681. The immobilized anti-hepcidin antibody may be a polyclonal antibody, or one or more monoclonal antibodies such as those described herein, or a combination of polyclonal and one or more monoclonal antibodies. The antibody may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is contemplated. In such cases, adsorption may be achieved by contacting the anti-hepcidin antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (including polystyrene or polyvinylchloride) with an amount of peptide ranging from about 10 ng to about 10 µg, about 100 ng to about 1 µs, is sufficient to immobilize an adequate amount of peptide.

[0239] Following immobilization, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, including bovine serum albumin, TweenTM 20TM (Sigma Chemical Co., St. Louis, Mo.), heat-inactivated normal goat serum (NGS), or BLOTTO (buffered solution of nonfat dry milk which also contains a preservative, salts, and an antifoaming agent) can be used. The support is then incubated with a biological sample suspected of containing hepcidin. The sample can be applied neat, or, more often, it can be diluted, usually in a buffered solution which contains a small amount (0.1%-5.0% by weight) of protein, such as BSA, NGS, or BLOTTO. In general, an appropriate contact time (i.e., incubation time) is a period of time that is sufficient to detect the presence of antibody or an antigen binding fragment that is immunospecific for the hepcidin within a sample containing hepcidin. In some embodiments, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound antibody or antibody fragment. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

[0240] Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% TweenTM 20. A detection reagent that binds to the hepcidin in the immunocomplexes (formed by binding of the capture agent and the hepcidin from the sample) may then be added. Such detection reagent may be a polyclonal antibody, or one or more monoclonal antibodies such as those described herein, or a combination of polyclonal and one or more monoclonal antibodies such as those described herein or a Fab fraction of any antibody. The detection reagent may be directly labeled, i.e., comprises at least a first detectable label or "reporter" molecule. Alternatively, the detection reagent may be an unlabeled anti-hepcidin antibody. This unlabeled anti-hepcidin (primary) antibody is then detected

by the binding of a labeled secondary antibody or reagent to the primary antibody. For example, if the primary antibody is a murine immunoglobulin, the secondary antibody may be a labeled anti-murine immunoglobulin antibody. Similarly, if the primary antibody is a rabbit immunoglobulin, the secondary antibody may be a labeled anti-rabbit immunoglobulin antibody.

[0241] The detection reagent is incubated with the immunocomplex for an amount of time sufficient to detect the bound antibody or antigen binding fragment thereof. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound label or detection reagent is then removed and bound label or detection reagent is detected using a suitable assay or analytical instrument. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive labels, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent or chemiluminescent moieties and various chromogens, fluorescent labels and such like. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups (including horseradish peroxidase, β-galactosidase, alkaline phosphatase and glucose oxidase) may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products. Regardless of the specific method employed, a level of bound detection reagent that is at least two fold greater than background (i.e., the level observed for a biological sample obtained from an individual with a normal level of hepcidin) indicates the presence of a disorder associated with expression of hepcidin.

[0242] In alternative embodiments, the sample and detection reagent may be contacted simultaneously with the capture agent, rather than sequentially added. In yet another alternative, the sample and detection reagent may be preincubated together, then added to the capture agent. Other variations are readily apparent to one of ordinary skill in the art.

[0243] In another embodiment, the amount of hepcidin present in a sample is determined by a competitive binding assay. Competitive binding assays rely on the ability of a labeled standard (e.g., a hepcidin polypeptide, or an immunologically reactive portion thereof) to compete with the test sample analyte (a hepcidin polypeptide) for binding with a limited amount of an anti-hepcidin antibody. Following separation of free and bound hepcidin, the hepcidin is quantitated by relating ratio of bound/unbound hepcidin to known standards. The amount of a hepcidin polypeptide in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies typically are immobilized on a solid support so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound. Thus, in such embodiments, also contemplated is contacting a biological sample with labeled mature hepcidin (or a labeled fragment thereof that retains the antigenicity of hepcidin) and an antibody that binds to mature hepcidin, and detecting the amount of antibody-labeled hepcidin complex formed.

[0244] Preparation of conjugates to solid supports or detectable labels often comprise the use of chemical cross-

linkers. Cross-linking reagents contain at least two reactive groups, and are divided generally into homofunctional cross-linkers (containing identical reactive groups) and heterofunctional cross-linkers (containing non-identical reactive groups). Homobifunctional cross-linkers that couple through amines, sulfhydryls or react non-specifically are available from many commercial sources. Maleimides, alkyl and aryl halides, alpha-haloacyls and pyridyl disulfides are thiol reactive groups. Maleimides, alkyl and aryl halides, and alpha-haloacyls react with sulfhydryls to form thiol ether bonds, whereas pyridyl disulfides react with sulfhydryls to produce mixed disulfides. The pyridyl disulfide product is cleavable. Imidoesters are also very useful for protein-protein cross-links.

[0245] Heterobifunctional cross-linkers possess two or more different reactive groups that allow for sequential conjugations with specific groups of proteins, minimizing undesirable polymerization or self-conjugation. Heterobifunctional reagents are also used when modification of amines is problematic. Amines may sometimes be found at the active sites of macromolecules, and the modification of these may lead to the loss of activity. Other moieties such as sulfhydryls, carboxyls, phenols and carbohydrates may be more appropriate targets. A two-step strategy allows for the coupling of a protein that can tolerate the modification of its amines to a protein with other accessible groups. A variety of heterobifunctional cross-linkers, each combining different attributes for successful conjugation, are commercially available. Cross-linkers that are amine-reactive at one end and sulfhydryl-reactive at the other end are quite common. If using heterobifunctional reagents, the most labile group is typically reacted first to ensure effective cross-linking and avoid unwanted polymerization.

[0246] As described in copending U.S. patent application Ser. No. 12/022,515, the disclosure of which is incorporated by reference herein in its entirety, it is the level of mature hepcidin (amino acids 60-84 of SEQ ID NO: 8) rather than the level of prohepcidin (amino acids 25-84 of SEQ ID NO: 8) which is diagnostic for certain disease states such as anemia of inflammation and anemia of cancer. Thus, in one preferred embodiment, antibody(ies) that bind to mature, properly folded, hepcidin (SEQ ID NO: 9) are used as both capture agent and detection reagent. Antibodies that bind to the naturally occurring N-terminally truncated versions (e.g. lacking up to two or up to five of the N-terminal amino acids of mature hepcidin) may also be used. Various combinations of capture agent and detection reagent are contemplated. For example, the capture agent may be a monoclonal antibody that binds to a first epitope of mature hepcidin and the detection reagent may be a different monoclonal antibody that binds to a second epitope of mature hepcidin. In some embodiments, antibodies specific for different epitopes of hepcidin are used, in order to minimize competition or interference between the capture agent and detection reagent. Alternatively, the capture agent may be a polyclonal antibody that binds to mature hepcidin and the detection reagent may be a monoclonal antibody. As yet another alternative, the capture agent may be a monoclonal antibody that binds to mature hepcidin and the detection reagent may be a polyclonal antibody. In any of the preceding embodiments, either the capture agent or the detection reagent may be a combination of a polyclonal and a monoclonal antibody.

[0247] In some embodiments, a mature-hepcidin-specific monoclonal antibody is used as either the capture agent or

detection reagent or both. A mature-hepcidin-specific antibody does not bind prohepcidin at all, or binds to prohepcidin with such low affinity that the antibody can differentiate mature hepcidin from prohepcidin. For example, such a monoclonal antibody may bind to the N-terminus of mature hepcidin, or it may bind an epitope of mature hepcidin that is not detectable in prohepcidin (e.g. due to masking by the prodomain).

[0248] In embodiments utilizing a monoclonal antibody that binds to an epitope present in both mature hepcidin and prohepcidin, an optional further refinement is contemplated. The amount of mature hepcidin alone is determined by subtracting the amount of prohepcidin present in the sample from the amount of total hepcidin (prohepcidin plus mature hepcidin) present in the same sample. The amount of prohepcidin can be determined by using prohepcidin-specific polyclonal and/or monoclonal antibodies in techniques like those described above. A prohepcidin-specific antibody does not bind mature hepcidin at all, or binds to mature hepcidin with such low affinity that the antibody can differentiate prohepcidin from mature hepcidin. For example, such antibodies may bind to a linear or conformational epitope present uniquely in the prodomain of hepcidin (amino acids 25-59 of SEQ ID NO: 8). In such embodiments, the amount of total hepcidin and prohepcidin may be determined sequentially or simultaneously. Because prohepcidin is rapidly degraded in serum to hepcidin, in some embodiments furin inhibitors are added to the biological sample in order to prevent or reduce degradation of prohepcidin.

[0249] In some embodiments utilizing a monoclonal antibody that binds to the 25-amino acid mature hepcidin, the monoclonal antibody does not bind the degradation products (i.e., hepcidin-22 and hepcidin-20).

[0250] In one embodiment of a simultaneous assay for detecting total hepcidin and prohepcidin, the capture agent is an antibody that binds to an epitope present in both mature hepcidin and prohepcidin, and two detection reagents are applied simultaneously. The first detection reagent is a labeled antibody that binds to an epitope present in both mature hepcidin and prohepcidin and the second detection reagent is a differently labeled prohepcidin-specific antibody. For example, the first detection reagent is labeled with a fluorescent dye detectable at a first wavelength while the second detection reagent is labeled with a fluorescent dye detectable at a second wavelength. Thus, in such an example, the capture agent will bind total hepcidin (mature hepcidin plus prohepcidin) in the sample, the first detection reagent will detect the amount of total hepcidin, and the second detection reagent will detect the amount of prohepcidin. Subtracting the amount of prohepcidin from amount of the total hepcidin will yield the amount of mature hepcidin. In other alternative embodiments, two different capture agents may be used: a first capture agent that binds to an epitope present in both mature hepcidin and prohepcidin, and a second capture agent that is a prohepcidin-specific antibody, optionally with a detection reagent that binds an epitope present in both mature hepcidin and prohepcidin.

[0251] Other embodiments for carrying out simultaneous assays are well known in the art, including the multiplex system described, e.g., in Khan et al., *Clin. Vaccine Immunol.*, 13(1) 45-52 (January 2006) involving differentially coded sets of fluorescent microbeads. Other embodiments for performing multiple simultaneous assays on a single surface include surfaces having a plurality of discrete, addressable

locations for the detection of a plurality of different analytes. Such formats include protein microarrays, or "protein chips" (see, e.g., Ng and Ilag, J. Cell Mol. Med. 6: 329-340 (2002)) and capillary devices (see, e.g., U.S. Pat. No. 6,019,944). In these embodiments, each discrete surface location has a different antibody that immobilizes a different analyte for detection at each location. Surfaces can alternatively have one or more discrete particles (e.g., microparticles or nanoparticles) immobilized at discrete locations of a surface, of which each set of particles contains a different capture agent for a different analyte.

[0252] Complementary antibody pairs (antibodies that bind to different epitopes on hepcidin such that the pairs are suitable for use in sandwich assays) were difficult to identify. Use of complementary pairs that minimize competition or interference can increase sensitivity of the assay by 20-fold to 50-fold. In some embodiments, the immunoassays described herein are capable of measuring hepcidin levels ranging from 0.01 ng/mL to 10 µg/mL.

[0253] Antibody pairs suitable for use in sandwich immunoassays include the following: (1) when one antibody of the pair is an antibody binds to the same epitope as antibody is 1S1, or competes with antibody 1S1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, a suitable second antibody may be: (a) an antibody that binds to the same epitope as antibody is 23F11, or competes with antibody 23F11 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (b) an antibody that binds to the same epitope as antibody is 15E1, or competes with antibody 15E1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (c) an antibody that binds to the same epitope as antibody is 12B9, or competes with antibody 12B9 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; (2) when one antibody of the pair is an antibody that binds to the same epitope as antibody 12B9 or competes with antibody 12B9 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, a suitable second antibody may be: (a) an antibody that binds to the same epitope as antibody 18D8, or competes with antibody 18D8 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (b) an antibody that binds to the same epitope as antibody 19C1. or competes with antibody 19C1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (c) an antibody that binds to the same epitope as antibody 19D12, or competes with antibody 19D12 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (d) an antibody that binds to the same epitope as antibody 19H6, or competes with antibody 19H6 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (e) an antibody that binds to the same epitope as antibody 1S1 or competes with antibody 1S1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (3) when one antibody o the pair is an antibody that binds to the same epitope as antibody 23F11, or competes with antibody 23F11 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, a suitable second antibody may be: (a) an antibody that binds to the same epitope as antibody 18D8, or competes with antibody 18D8 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (b) an antibody that binds to the same epitope as antibody 19C1, or competes with antibody 19C1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (c) an antibody that binds to the same epitope as antibody 19D12, or competes with antibody 19D12 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, or (d) an antibody that binds to the same epitope as antibody 19H6, or competes with antibody 19H6 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (e) an antibody that binds to the same epitope as antibody 1S1 or competes with antibody 4E1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; or (f) an antibody that binds to the same epitope as antibody 3B3 or competes with antibody 3B3 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more; (4) when one antibody of the pair is an antibody binds to the same epitope as antibody 15E1, or competes with antibody 15E1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more, a suitable second antibody may be: (a) an antibody that binds to the same epitope as antibody 1S1, or competes with antibody 1S1 for binding to mature human hepcidin of SEQ ID NO: 9 by at least about 75%, 80%, 85%, 90% or more.

[0254] In some embodiments, methods for monitoring the effectiveness of therapy with an anti-hepcidin antibody include monitoring changes in the level of hepcidin in a sample, or in an animal such as a human patient. Methods in which hepcidin levels are monitored may comprise (a) incubating a first biological sample, obtained from a patient prior to a therapy with one or more of the anti-hepcidin antibodies disclosed herein, wherein the incubation is performed under conditions and for a time sufficient to allow immunocomplexes to form; (b) detecting immunocomplexes formed between the hepcidin in the biological sample and antibodies or antigen binding fragments that specifically bind hepcidin; and optionally (c) repeating steps (a) and (b) using a second biological sample taken from the patient at later time, such as for example, following therapy with one or more of the antihepcidin antibodies disclosed herein; and (d) comparing the number of immunocomplexes detected in the first and second biological samples.

[0255] Other monitoring methods include measuring (a) the blood (e.g., serum or plasma) circulating level of complexes between hepcidin and the therapeutic agent, and optionally (b) the amount of free hepcidin present in circulation. For example, complexes between hepcidin and therapeutic antibody can be detected using an anti-human Fc antibody that binds to the therapeutic antibody part of the complex and an Fab fragment of a "pairing" anti-hepcidin antibody that binds to the hepcidin part of the complex. Alternatively, an anti-idiotypic antibody can be used in place of the anti-human Fc antibody. As another alternative, an anti-hepcidin antibody containing a non-human Fc (e.g. a human Fc is replaced with murine Fc) can be used in place of the Fab fragment.

[0256] As another example, free hepcidin can be detected after removing hepcidin-therapeutic antibody complexes from the biological sample, using either an anti-human Fc antibody or an anti-idiotypic antibody that has been immobilized on a solid support. The amount of free hepcidin which remains unbound to the solid support is then measured. This

level of free hepcidin may reflect the effectiveness of the therapeutic antibody in removing available circulating hepcidin.

[0257] A biological sample for use within such methods may be any sample obtained from a patient that would be expected to contain hepcidin. Exemplary biological samples include blood, plasma, sera, urine and bone marrow. A first biological sample may be obtained prior to initiation of therapy or part way through a therapy regime. The second biological sample should be obtained in a similar manner, but at a time following additional therapy. The second biological sample may be obtained at the completion of, or part way through, therapy, provided that at least a portion of therapy takes place between the isolation of the first and second biological samples.

[0258] Incubation and detection procedures for both samples may generally be performed as described above. A decrease in the number of immunocomplexes in the second sample relative to the first sample indicates a decrease in hepcidin levels and reflects successful therapy. Free serum hepcidin may also be analyzed in a similar manner, and a decrease in free serum hepcidin indicates successful therapy.

decrease in free serum hepcidin indicates successful therapy. [0259] Hepcidin-related disorders, inflammatory diseases, and diseases or disorders of iron homeostasis for which the diagnostic or monitoring methods may be useful include but are not limited to african iron overload, alpha thalassemia, Alzheimer's disease, anemia, anemia of cancer, anemia of chronic disease, anemia of inflammation, arteriosclerosis or atherosclerosis (including coronary artery disease, cerebrovascular disease or peripheral occlusive arterial disease), ataxias, ataxias related to iron, atransferrinemia, cancer, ceruloplasmin deficiency, chemotherapy-induced anemia, chronic renal/kidney disease (stage I, II, III, IV or V), including end stage renal disease or chronic renal/kidney failure, cirrhosis of liver, classic hemochromatosis, collagen-induced arthritis (CIA), conditions with hepcidin excess (elevated hepcidin), congenital dyserythropoietic anemia, congestive heart failure, Crohn's disease, diabetes, disorders of iron biodistribution, disorders of iron homeostasis, disorders of iron metabolism, ferroportin disease, ferroportin mutation hemochromatosis, folate deficiency, Friedrich's ataxia, funicular myelosis, gracile syndrome, H. pyelori infection or other bacterial infections, Hallervordan Spatz disease, hemochromatosis, hemochromatosis resulting from mutations in transferrin receptor 2, hemoglobinopathies, hepatitis, hepatitis (Brock), hepatitis C, hepatocellular carcinoma, hepcidin deficiency, hereditary hemochromatosis, HIV or other viral illnesses, Huntington's disease, hyperferritinemia, hypochromic microcytic anemia, hypoferremia, insulin resistance, iron deficiency anemia, iron deficiency disorders, iron overload disorders, iron-deficiency conditions with hepcidin excess, juvenile hemochromatosis (HFE2), multiple sclerosis, mutation in transferrin receptor 2, FIFE, hemojuvelin, ferroportin or other genes of iron metabolism, neonatal hemochromatosis, neurodegenerative diseases related to iron, osteopenia, osteoporosis pancreatitis, Pantothenate kinase-associated neurodegeneration, Parkinson's disease, pellagra, pica, porphyria, porphyria cutanea tarda, pseudoencephalitis, pulmonary hemosiderosis, red blood cell disorders, rheumatoid arthritis, sepsis, sideroblastic anemia, systemic lupus erythematosus, thalassemia, thalassemia intermedia, transfusional iron overload, tumors, vasculitis, vitamin B6 deficiency, vitamin B12 deficiency, and/or Wilson's disease.

[0260] Methods of setting an appropriate threshold for diagnosis of the disease states described herein and prognostic monitoring as described herein are well known in the art. By way of example, levels of hepcidin in a fluid sample from a sufficient representative number of normal subjects (e.g. healthy population without the condition to be detected) are analyzed relative to the hepcidin level from a sufficient representative number of diseased subjects (e.g. population confirmed to have the disease or condition) using the same protocols. A threshold cutoff can be determined that differentiates most of the normal population from most of the diseased population. Alternatively, useful end point values for negative, uncertain and positive results can be determined from the data. For example, a normal range (indicative of a negative result) can be determined, which includes hepcidin of most of the normal population but which exclude almost all of the diseased population. Correspondingly, a range indicative of a positive result can be determined, which includes hepcidin of most of the diseased population but which exclude almost all of the normal population. Similarly, a threshold differentiating hepcidin levels in a population suffering from anemia of inflammation from hepcidin levels in a population suffering from iron deficiency anemia can be determined. Useful endpoint values may indicate that the patient is suffering from anemia of inflammation, iron deficiency anemia or mixed anemia. Appropriate endpoint values for the threshold may be determined to optimize the desired specificity or sensitivity, and may also take account of overall medical and epidemiological factors. Factors to be considered include the clinical objective of the laboratory test and whether it is necessary to have a high positive predictive value, or a high negative predictive value, as well as prevalence of the disease in the test population.

Therapeutic Uses for Anti-Hepcidin Antibodies

[0261] Also provided is the use of anti-hepcidin antibodies described herein that specifically bind human hepcidin, to treat subjects in need thereof. In some embodiments, the subject may be at risk of or suffering from an elevated level of hepcidin, a hepcidin-related disorder, a disorder of iron homeostasis, or anemia.

[0262] As used herein, "treatment" or "treat" refers to both prophylactic treatment of a subject at risk of, or having a predisposition toward, a disease or disorder, and to therapeutic treatment of a subject suffering from a disease or disorder.

[0263] Administration of a therapeutic agent in a prophylactic method can occur prior to the manifestation of symptoms of an undesired disease or disorder, such that the disease or disorder is prevented or, alternatively, delayed in its progression. Thus, when used in conjunction with prophylactic methods, the term "therapeutically effective" means that, after treatment, a fewer number of subjects (on average) develop the undesired disease or disorder or progress in severity of symptoms.

[0264] When used in conjunction with therapeutic methods involving administration of a therapeutic agent after the subject manifests symptoms of a disease or disorder, the term "therapeutically effective" means that, after treatment, one or more signs or symptoms of the disease or disorder is ameliorated or eliminated.

[0265] "Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic

and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In some embodiments, the mammal is human.

[0266] As used herein, a "hepcidin-related disorder" refers to a condition caused by or associated with an abnormal level of hepcidin (e.g., hepcidin excess or hepcidin deficiency relative to the degree of anemia or iron stored) which disrupts iron homeostasis. A disruption in iron homeostasis can in turn result in secondary diseases such as anemia. Acute or chronic inflammatory conditions can result in upregulation of hepcidin expression, which can result in decreased circulating iron levels, which can cause anemia or worsen existing anemia. Exemplary hepcidin-related inflammatory diseases include anemia of cancer, anemia of chronic disease, anemia of inflammation, chemotherapy-induced anemia, chronic kidney disease (stage I, II, III, IV or V), end stage renal disease, chronic renal failure congestive heart failure, cancer, rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, H. pyelori infection or other bacterial infections, hepatitis C, HIV, and other viral illnesses, arteriosclerosis, atherosclerosis, cirrhosis of the liver, pancreatitis, sepsis, vasculitis, irondeficiency, hypochromic microcytic anemia and conditions with hepcidin excess.

[0267] As used herein, the phrase "disease (or disorder) of iron homeostasis" refers to a condition in which a subject's iron levels require modulation. It includes hepcidin-related disorders; conditions not associated with elevated levels of hepcidin that nevertheless would benefit from inhibition of hepcidin activity, such as a disruption in iron homeostasis not caused by hepcidin; diseases where aberrant iron absorption, recycling, metabolism or excretion causes a disruption in normal iron blood levels or tissue distribution; diseases where iron dysregulation is a consequence of another disease or condition, such as inflammation, cancer or chemotherapy; diseases or disorders resulting from abnormal iron blood levels or tissue distribution; and diseases or disorders that can be treated by modulating iron levels or distribution. Nonlimiting examples of such diseases or disorders of iron homeostasis, hepcidin-related disorders and inflammatory conditions which can result in hepcidin excess include african iron overload, alpha thalassemia, Alzheimer's disease, anemia, anemia of cancer, anemia of chronic disease, anemia of inflammation, arteriosclerosis or atherosclerosis (including coronary artery disease, cerebrovascular disease or peripheral occlusive arterial disease), ataxias, ataxias related to iron, atransferrinemia, cancer, ceruloplasmin deficiency, chemotherapy-induced anemia, chronic renal/kidney disease (stage I, II, III, IV or V), including end stage renal disease or chronic renal/kidney failure, cirrhosis of liver, classic hemochromatosis, collagen-induced arthritis (CIA), conditions with hepcidin excess (elevated hepcidin), congenital dyserythropoietic anemia, congestive heart failure, Crohn's disease, diabetes, disorders of iron biodistribution, disorders of iron homeostasis, disorders of iron metabolism, ferroportin disease, ferroportin mutation hemochromatosis, folate deficiency, Friedrich's ataxia, funicular myelosis, gracile syndrome, H. pyelori infection or other bacterial infections, Hallervordan Spatz disease, hemochromatosis, hemochromatosis resulting from mutations in transferrin receptor 2, hemoglobinopathies, hepatitis, hepatitis (Brock), hepatitis C, hepatocellular carcinoma, hereditary hemochromatosis, HIV or other viral illnesses, Huntington's disease, hyperferritinemia, hypochromic microcytic anemia, hypoferremia, insulin resistance, iron deficiency anemia, iron deficiency disorders,

iron overload disorders, iron-deficiency conditions with hepcidin excess, juvenile hemochromatosis (HFE2), multiple sclerosis, mutation in transferrin receptor 2, HFE, hemojuvelin, ferroportin or other genes of iron metabolism, neonatal hemochromatosis, neurodegenerative diseases related to iron, osteopenia, osteoporosis pancreatitis, Pantothenate kinase-associated neurodegeneration, Parkinson's disease, pellagra, pica, porphyria, porphyria cutanea tarda, pseudoencephalitis, pulmonary hemosiderosis, red blood cell disorders, rheumatoid arthritis, sepsis, sideroblastic anemia, systemic lupus erythematosus, thalassemia, thalassemia intermedia, transfusional iron overload, tumors, vasculitis, vitamin B6 deficiency, vitamin B12 deficiency, and/or Wilson's disease.

[0268] Non-inflammatory conditions which are implicated in a disruption of iron regulation include, but are not limited to, vitamin B6 deficiency, vitamin B12 deficiency, folate deficiency, pellagra, funicular myelosis, pseudoencephalitis, Parkinson's disease (Fasano et al., *J. Neurochem.* 96:909 (2006) and Kaur et al., *Ageing Res. Rev.*, 3:327 (2004)), Alzheimer's disease, coronary heart disease, osteopenia and osteoporosis (Guggenbuhl et al., *Osteoporos. Int.* 16:1809 (2005)), hemoglobinopathies and other disorders of red cell metabolism (Papanikolaou et al., *Blood* 105:4103 (2005)), and peripheral occlusive arterial disease.

[0269] Various other iron indices and their normal ranges of concentrations are listed in Table 2.

TABLE 2

Iron Index	Normal Level (Range)
Serum iron	50-170 μg/dL
Hemoglobin	11.5-18 g/dL
Hematocrit	37-54%
Red blood cell count (RBC)	$4.6-6.2 \times 10^{12}$ cells/L (men) $4.25-5.4 \times 10^{12}$ cells/L (women)
Mean Corpuscular	27-32 pg
Hemoglobin (MCH)	
Mean Corpuscular	32-36%
Hemoglobin Concentration (MCHC)	
Mean Corpuscular Volume	80-96 fT.
(MCV)	80-90 IL
Red Cell Distribution	11.5-14.5% (electrical impedence method)
Width (RDW)	or 10.2-11.8% (laser light method)
Reticulocyte count	$18-158 \times 10^9 \text{ cells/L}$
·	(0.8-2.5% in men; 0.8-4% in women)
Total Iron Binding	250-450 μg/dL
Capacity (TIBC)	
Transferrin Iron Satura-	15-50%
tion Percentage (Tsat)	
Ferritin	12-120 μg/L
Folate	3-16 ng/mL (serum) and
	130-628 ng/mL (red blood cell)
Vitamin B12	200-900 pg/ml

[0270] A patient's iron index level outside of the normal ranges listed in Table 2 indicates that the patient may benefit from treatment with an anti-hepcidin antibody described herein. Since hepcidin plays a key role in iron homeostasis, hepcidin levels and activity will correlate to a disruption of iron homeostasis and/or iron indices. Elevated hepcidin levels correlate with serum iron levels below the normal ranges indicated in Table 2, low hemoglobin, and hematocrit, reduced or normal Tsat and high or normal ferritin values, and elevated inflammatory status as measured by C-reactive protein (CRP) elevation or other markers of inflammation.

[0271] As used herein, the phrase "therapeutically effective amount" of an anti-hepcidin antibody described herein refers to an amount that results in the desired therapeutic effect (i.e. that provides "therapeutic efficacy"). Exemplary therapeutic effects include increased circulating iron levels or increased iron availability, increased red blood cell count, increased red blood cell mean cell volume, increased red blood cell hemoglobin content, increased hemoglobin (e.g., increased by ≥0.5 g/dL), increased hematocrit, increased Tsat, increased reticulocyte count, increased or normalized reticulocyte mean cell volume, increased reticulocyte hemoglobin content, or reduced free hepcidin levels in serum or plasma, or normalization of any of the parameters described above. Returning such a parameter to its normal range is not required for therapeutic efficacy; for example, a measurable change (increase or reduction) in the direction of normal can be considered to be a desired therapeutic effect by a clinician. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. For example, in aspects where the anti-hepcidin antibody is administered in conjunction with an enrythropoiesis stimulator, a therapeutically effective amount is meant to refer to the combined amount that increases or normalizes any of the parameters stated above.

[0272] In order to facilitate the diagnosis of patients, decision trees, such as that of FIG. 14B, can be used to interpret the level of the hepcidin, and which is used to assist the user or interpreter in determining a course of treatment and the significance of the concentration reading. Hepcidin values are predicted to be elevated in patients with inflammation iron overload and ferroportin disease and suppressed in patients with hemochromatosis, hemoglobinopathies, and other red cell disorders. The decision tree of FIG. 14B shows how measurement of hepcidin levels simplifies diagnosis and/or assessment of a patient suspected of having iron metabolism disorders. FIG. 14A shows the decision tree assessment without a measurement of hepcidin levels.

[0273] The compositions for and methods of treatment described herein may utilize one or more anti-hepcidin anti-bodies described herein used singularly or in combination with other therapeutic agents to achieve the desired effects.

Combination Therapy

[0274] It may be further advantageous to mix two or more antibodies together (which bind to the same or different target antigens) or to co-administer an antibody described herein with a second therapeutic agent to provide still improved efficacy. Concurrent administration of two therapeutic agents does not require that the agents be administered at the same time or by the same route, as long as there is an overlap in the time period during which the agents are exerting their therapeutic effect. Simultaneous or sequential administration is contemplated, as is administration on different days or weeks.

[0275] In some embodiments, the methods described herein include the administration of single antibodies, as well as combinations, or "cocktails", of different antibodies. Such antibody cocktails may have certain advantages inasmuch as they contain antibodies which exploit different effector mechanisms. Such antibodies in combination may exhibit synergistic therapeutic effects.

[0276] Combination therapy using an anti-hepcidin antibody described herein and an erythropoiesis stimulator is specifically contemplated. In various embodiments, anti-hepcidin antibodies and erythropoiesis stimulators can be used to improve treatment of a patient with anemia. In particular, patients who are hypo-responsive to, including unresponsive or resistant to, erythropoiesis stimulator therapy, such as erythropoietin or analogs thereof (Epoetin alfa, Epoetin beta, darbepoetin alfa), among others, will benefit from co-treatment with an anti-hepcidin antibody described herein. In one embodiment, combination therapy includes treatment with at least one antibody that binds to human hepcidin and at least one erythropoiesis stimulator.

[0277] Combination therapy using an anti-hepcidin antibody and an iron chelator to redistribute iron stores in the body is also contemplated. An iron chelator is an agent capable of binding iron and removing it from a tissue or from circulation. Examples include deferoxamine (Desferal®) and deferasirox (Exjade®), and deferiprone (1,2-dimethyl-3-hydroxypyridin-4-one). In some embodiments, anti-hepcidin antibodies and erythropoiesis stimulators can be used to improve treatment of a patient an iron loading disorder secondary to transfusion-dependent iron overload, or have an iron maldistribution disorder such as Friedreich's ataxia.

[0278] As used herein, "erythropoiesis stimulator" means a chemical compound that directly or indirectly causes activation of the erythropoietin receptor, for example, by binding to and causing dimerization of the receptor or by stimulating endogenous erythropoietin expression. Erythropoiesis stimulators include erythropoietin and variants, analogs, or derivatives thereof that bind to and activate erythropoietin receptor; antibodies that bind to erythropoietin receptor and activate the receptor; or peptides that bind to and activate erythropoietin receptor; or small organic chemical compounds, optionally less than about 1000 Daltons in molecular weight, that bind to and activate erythropoietin receptor. Erythropoiesis stimulators include, but are not limited to, epoetin alfa, epoetin beta, epoetin delta, epoetin omega, epoetin iota, epoetin zeta, and analogs thereof, pegylated erythropoietin, carbamylated erythropoietin, mimetic peptides (including EMP1/hematide), mimetic antibodies and HIF inhibitors (see U.S. Patent Application Publication No. 2005/0020487, the disclosure of which is incorporated by reference in its entirety). Exemplary erythropoiesis stimulators include erythropoietin. darbepoetin, erythropoietin agonist variants, and peptides or antibodies that bind and activate erythropoietin receptor (and include compounds reported in U.S. Patent Application Publication Nos. 2003/0215444 and 2006/0040858, the disclosures of each of which is incorporated herein by reference in its entirety) as well as erythropoietin molecules or variants or analogs thereof as disclosed in the following patents or patent applications, which are each herein incorporated by reference in its entirety: U.S. Pat. Nos. 4,703,008; 5,441,868; 5,547, 933; 5,618,698; 5,621,080; 5,756,349; 5,767,078; 5,773,569; 5,955,422; 5,830,851; 5,856,298; 5,986,047; 6,310,078; 6,391,633; 6,583,272; 6,586,398; 6,900,292; 6,750,369; 7,030,226; 7,084,245; 7,217,689; PCT publication nos. WO 91/05867; WO 95/05465; WO 99/66054; WO 00/24893; WO 01/81405; WO 00/61637; WO 01/36489; WO 02/014356; WO 02/19963; WO 02/20034; WO 02/49673; WO 02/085940; WO 03/029291; WO 2003/055526; WO 2003/ 084477; WO 2003/094858; WO 2004/002417; WO 2004/ 002424; WO 2004/009627; WO 2004/024761; WO 2004/ 033651; WO 2004/035603; WO 2004/043382; WO 2004/

101600; WO 2004/101606; WO 2004/101611; WO 2004/ 106373; WO 2004/018667; WO 2005/001025; WO 2005/ 001136; WO 2005/021579; WO 2005/025606; WO 2005/ 032460; WO 2005/051327; WO 2005/063808; WO 2005/ 063809; WO 2005/070451; WO 2005/081687; WO 2005/ 084711; WO 2005/103076; WO 2005/100403; WO 2005/ 092369; WO 2006/50959; WO 2006/02646; WO 2006/ 29094; and U.S. Patent Application Publication Nos.: US 2002/0155998; US 2003/0077753; US 2003/0082749; US 2003/0143202; US 2004/0009902; US 2004/0071694; US 2004/0091961; US 2004/0143857; US 2004/0157293; US 2004/0175379; US 2004/0175824; US 2004/0229318; US 2004/0248815; US 2004/0266690; US 2005/0019914; US 2005/0026834; US 2005/0096461; US 2005/0107297; US 2005/0107591; US 2005/0124045; US 2005/0124564; US 2005/0137329; US 2005/0142642; US 2005/0143292; US 2005/0153879; US 2005/0158822; US 2005/0158832; US 2005/0170457; US 2005/0181359; US 2005/0181482; US 2005/0192211; US 2005/0202538; US 2005/0227289; US 2005/0244409; US 2006/0088906; US 2006/0111279.

[0279] Erythropoietin includes, but is not limited to, a polypeptide comprising the amino acid sequence as set forth in SEQ ID NO: 72. Amino acids i through 165 of SEQ ID NO: 72 constitute the mature protein of any molecules designated as an epoetin, e.g., epoetin alfa, epoetin beta, epoetin delta, epoetin omega, epoetin iota, epoetin gamma, epoetin zeta, and the like. Additionally, an epoetin also includes any of the aforementioned epoetin which are chemically modified, e.g., with one or more water-soluble polymers such as, e.g., polyethylene glycol (including PEG-EPO-beta). Also contemplated are analogs of erythropoietin, with 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to SEQ ID NO: 72 still retaining erythropoietic activity.

[0280] Exemplary sequences, manufacture, purification and use of recombinant human erythropoietin are described in a number of patent publications, including but not limited to Lin U.S. Pat. No. 4,703,008 and Lai et al. U.S. Pat. No. 4,667,016, each of which is incorporated herein by reference in its entirety. Darbepoetin is a hyperglycosylated erythropoietin analog having five changes in the amino acid sequence of rHuEPO which provide for two additional carbohydrate chains. More specifically, darbepoetin alfa contains two additional N-linked carbohydrate chains at amino acid residues 30 and 88 of SEQ ID NO: 73. Exemplary sequences, manufacture, purification and use of darbepoetin and other erythropoietin analogs are described in a number of patent publications, including Strickland et al., WO 91/05867, Elliott et al., WO 95/05465, Egrie et al., WO 00/24893, and Egrie et al. WO 01/81405, each of which is incorporated herein by reference in its entirety. Derivatives of naturally occurring or analog polypeptides include those which have been chemically modified, for example, to attach water soluble polymers (e.g., pegylated), radionuclides, or other diagnostic or targeting or therapeutic moieties.

[0281] The term "erythropoietic activity" means activity to stimulate erythropoiesis as demonstrated in an in vivo assay, for example, the exhypoxic polycythemic mouse assay. See, e.g., Cotes and Bangham, *Nature* 191:1065 (1961).

Administration and Preparation of Pharmaceutical Formulations

[0282] In another aspect, pharmaceutical compositions are provided comprising a therapeutically effective amount of

any of the antibodies described herein and a pharmaceutically acceptable sterile carrier, diluent or excipient. Also provided is the use of such antibodies in preparation of a medicament for treatment of a human with an elevated level of hepcidin, a hepcidin-related disorder, a disorder of iron homeostasis or an anemia. It is understood that co-administration methods involving administration of antibodies with a second therapeutic agent, as described herein, encompass not only the use of the antibody in preparation of a medicament for co-administration with the second therapeutic agent, but also the use of the second therapeutic agent in preparation of a medicament for co-administration with the antibody.

[0283] In some embodiments, the anti-hepcidin antibodies or specific binding agents used in the practice of a method described herein may be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material which, when combined with an anti-hepcidin antibody or specific binding agent, retains the high-affinity binding of hepcidin and is nonreactive with the subject's immune systems. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.4% saline, 0.3% glycine and the like, and may include other proteins for enhanced stability, such as albumin, lipoprotein, globulin, etc., subjected to mild chemical modifications or the like.

[0284] Exemplary antibody concentrations in the formulation may range from about 0.1 mg/ml to about 180 mg/ml or from about 0.1 mg/mL to about 50 mg/mL, or from about 0.5 mg/mL to about 25 mg/mL, or alternatively from about 2 mg/mL to about 10 mg/mL. An aqueous formulation of the antibody may be prepared in a pH-buffered solution, for example, at pH ranging from about 4.5 to about 6.5, or from about 4.8 to about 5.5, or alternatively about 5.0. Examples of buffers that are suitable for a pH within this range include acetate (e.g. sodium acetate), succinate (such as sodium succinate), gluconate, histidine, citrate and other organic acid buffers. The buffer concentration can be from about 1 mM to about 200 mM, or from about 10 mM to about 60 mM, depending, for example, on the buffer and the desired isotonicity of the formulation.

[0285] A tonicity agent, which may also stabilize the antibody, may be included in the formulation. Exemplary tonicity agents include polyols, such as mannitol, sucrose or trehalose. In some embodiments, the aqueous formulation is isotonic, although hypertonic or hypotonic solutions may be suitable. Exemplary concentrations of the polyol in the formulation may range from about 1% to about 15% w/v.

[0286] A surfactant may also be added to the antibody formulation to reduce aggregation of the formulated antibody and/or minimize the formation of particulates in the formulation and/or reduce adsorption. Exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbate 20, or polysorbate 80) or poloxamers (e.g. poloxamer 188). Exemplary concentrations of surfactant may range from about 0.001% to about 0.5%, or from about 0.005% to about 0.2%, or alternatively from about 0.004% to about 0.01% w/v.

[0287] In one embodiment, the formulation contains the above-identified agents (i.e. antibody, buffer, polyol and surfactant) and is essentially free of one or more preservatives, such as benzyl alcohol, phenol, m-cresol, chlorobutanol and

benzethonium C1. In another embodiment, a preservative may be included in the formulation, e.g., at concentrations ranging from about 0.1% to about 2%, or alternatively from about 0.5% to about 1%. One or more other pharmaceutically acceptable carriers, excipients or stabilizers such as those described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) may be included in the formulation provided that they do not adversely affect the desired characteristics of the formulation. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include; additional buffering agents; co-solvents; antoxidants including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; and/or salt-forming counterions such as sodium.

[0288] Therapeutic formulations of the anti-hepcidin antibody are prepared for storage by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, maltose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG).

[0289] In one embodiment, a suitable formulation contains an isotonic buffer such as a phosphate, acetate, or TRIS buffer in combination with a tonicity agent such as a polyol, Sorbitol, sucrose or sodium chloride which tonicifies and stabilizes. One example of such a tonicity agent is 5% Sorbitol or sucrose. In addition, the formulation could optionally include a surfactant such as to prevent aggregation and for stabilization at 0.01 to 0.02% wt/vol. The pH of the formulation may range from 4.5-6.5 or 4.5-5.5. Other exemplary descriptions of pharmaceutical formulations for antibodies may be found in US 2003/0113316 and U.S. Pat. No. 6,171,586, each incorporated herein by reference in its entirety.

[0290] The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide an immunosuppressive agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

[0291] The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example,

hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).

[0292] Suspensions and crystal forms of antibodies are also contemplated. Methods to make suspensions and crystal forms are known to one of skill in the art.

[0293] The formulations to be used for in vivo administration must be sterile. In some embodiments, the compositions described herein may be sterilized by conventional, well known sterilization techniques. For example, sterilization is readily accomplished by filtration through sterile filtration membranes. The resulting solutions may be packaged for use or filtered under aseptic conditions and lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.

[0294] The process of freeze-drying is often employed to stabilize polypeptides for long-term storage, particularly when the polypeptide is relatively unstable in liquid compositions. A lyophilization cycle is usually composed of three steps: freezing, primary drying, and secondary drying; Williams and Polli, Journal of Parenteral Science and Technology, Volume 38, Number 2, pages 48-59 (1984). In the freezing step, the solution is cooled until it is adequately frozen. Bulk water in the solution forms ice at this stage. The ice sublimes in the primary drying stage, which is conducted by reducing chamber pressure below the vapor pressure of the ice, using a vacuum. Finally, sorbed or bound water is removed at the secondary drying stage under reduced chamber pressure and an elevated shelf temperature. The process produces a material known as a lyophilized cake. Thereafter the cake can be reconstituted prior to use.

[0295] The standard reconstitution practice for lyophilized material is to add back a volume of pure water (typically equivalent to the volume removed during lyophilization), although dilute solutions of antibacterial agents are sometimes used in the production of pharmaceuticals for parenteral administration; Chen, *Drug Development and Industrial Pharmacy*, Volume 18, Numbers 11 and 12, pages 1311-1354 (1992).

[0296] Excipients have been noted in some cases to act as stabilizers for freeze-dried products; Carpenter et al., *Developments in Biological Standardization*, Volume 74, pages 225-239 (1991). For example, known excipients include polyols (including mannitol, sorbitol and glycerol); sugars (including glucose and sucrose); and amino acids (including alanine, glycine and glutamic acid).

[0297] In addition, polyols and sugars are also often used to protect polypeptides from freezing and drying-induced damage and to enhance the stability during storage in the dried state. In general, sugars, in particular disaccharides, are effective in both the freeze-drying process and during storage. Other classes of molecules, including mono- and disaccharides and polymers such as PVP, have also been reported as stabilizers of lyophilized products.

[0298] For injection, the pharmaceutical formulation and/ or medicament may be a powder suitable for reconstitution with an appropriate solution as described above. Examples of these include, but are not limited to, freeze dried, rotary dried or spray dried powders, amorphous powders, granules, precipitates, or particulates. For injection, the formulations may optionally contain stabilizers, pH modifiers, surfactants, bioavailability modifiers and combinations of these.

[0299] Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustainedrelease matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the Lupron DepotTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

[0300] In some embodiments, the formulations described herein may be designed to be short-acting, fast-releasing, long-acting, or sustained-releasing as described herein. Thus, the pharmaceutical formulations may also be formulated for controlled release or for slow release.

[0301] Therapeutically effective amounts of a composition will vary and depend on the severity of the disease and the weight and general state of the subject being treated, but generally range from about 1.0 µg/kg to about 100 mg/kg body weight, or about 10 µg/kg to about 30 mg/kg, or about 0.1 mg/kg to about 10 mg/kg or about 1 mg/kg to about 10 mg/kg per application. Administration can be daily, on alternating days, weekly, twice a month, monthly or more or less frequently, as necessary depending on the response to the disorder or condition and the subject's tolerance of the therapy. Maintenance dosages over a longer period of time, such as 4, 5, 6, 7, 8, 10 or 12 weeks or longer may be needed until a desired suppression of disorder symptoms occurs, and dosages may be adjusted as necessary. The progress of this therapy is easily monitored by conventional techniques and assays.

[0302] Specific dosages may be adjusted depending on conditions of disease, the age, body weight, general health conditions, sex, and diet of the subject, dose intervals, administration routes, excretion rate, and combinations of drugs. Any of the above dosage forms containing effective amounts are well within the bounds of routine experimentation and therefore, well within the scope of the instant invention.

[0303] The anti-hepcidin antibody or specific binding agent is administered by any suitable means, either systemically or locally, including via parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration. Parenteral routes include intravenous, intraarterial, intraperitoneal, epidural, intrathecal administration. In addition, the specific binding agent or antibody is suitably administered by pulse infusion, particularly with declining doses of the specific

binding agent or antibody. In some embodiments, the dosing is given by injections, e.g., intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic. Other administration methods are contemplated, including topical, particularly transdermal, transmucosal, rectal, oral or local administration e.g. through a catheter placed close to the desired site. In some embodiments, the specific binding agent or antibody described herein is administered intravenously in a physiological solution at a dose ranging between 0.01 mg/kg to 100 mg/kg at a frequency ranging from daily to weekly to monthly (e.g. every day, every other day, every third day, or 2, 3, 4, 5, or 6 times per week), or a dose ranging from 0.1 to 45 mg/kg, 0.1 to 15 mg/kg or 0.1 to 10 mg/kg at a frequency of 2 or 3 times per week, or up to 45 mg/kg once a month.

Diagnostic and Therapeutic Kits

[0304] In another related aspect, kits for treating a disorder associated with elevated hepcidin levels, or a hepcidin-related disorder, or a disorder of iron homeostasis, or a mammal with anemia, are also provided. In one embodiment, the kit includes (a) an anti-hepcidin antibody, and (b) an erythropoiesis stimulator, and optionally, iron. In another embodiment, the kit includes an anti-hepcidin antibody and a label attached to or packaged with the container, the label describing use of the anti-hepcidin antibody with an erythropoiesis stimulator. In yet another embodiment, the kit includes an erythropoiesis stimulator and a label attached to or packaged with the container, the label describing use of the erythropoiesis stimulator with an anti-hepcidin antibody. Also provided is the use of an anti-hepcidin antibody in preparation of a medicament for administration with an erythropoiesis stimulator, as well as use of an erythropoiesis stimulator in preparation of a medicament for administration with an anti-hepcidin antibody. In any of these kits or uses, the anti-hepcidin antibody and the erythropoiesis stimulator can be in separate vials or can be combined together in a single pharmaceutical composition. In yet another embodiment, an anti-hepcidin antibody or erythropoiesis stimulator, or both, can be combined with iron in a single pharmaceutical composition or can be in separate vials.

[0305] As a matter of convenience, an antibody disclosed herein can be provided in a kit, i.e., a packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the antibody is labeled with an enzyme, the kit will include substrates and cofactors required by the enzyme (e.g., a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g., a block buffer or lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients which on dissolution will provide a reagent solution having the appropriate concentration.

[0306] Also provided are diagnostic reagents and kits comprising one or more such reagents for use in a variety of diagnostic assays, including for example, immunoassays such as ELISA (sandwich-type or competitive format). In some embodiments, such kits may include at least a first peptide (optionally a properly folded mature hepcidin standard as described herein), or a first antibody or antigen binding fragment described herein, a functional fragment thereof, or a cocktail thereof, and means for signal generation. The kit's components may be pre-attached to a solid support, or

may be applied to the surface of a solid support when the kit is used. In some embodiment, the signal generating means may come pre-associated with an antibody described herein or may require combination with one or more components, e.g., buffers, antibody-enzyme conjugates, enzyme substrates, or the like, prior to use. Kits may also include additional reagents, e.g., blocking reagents for reducing nonspecific binding to the solid phase surface, washing reagents, enzyme substrates, and the like. The solid phase surface may be in the form of a tube, a bead, a microtiter plate, a microsphere, or other materials suitable for immobilizing proteins, peptides, or polypeptides. In some embodiments, an enzyme that catalyzes the formation of a chemiluminescent or chromogenic product or the reduction of a chemiluminescent or chromogenic substrate is a component of the signal generating means. Such enzymes are well known in the art. Kits may comprise any of the capture agents and detection reagents described herein. Optionally the kit may also comprise instructions for carrying out the methods described herein.

[0307] Also provided is a kit comprising an anti-hepcidin antibody described herein and an erythropoiesis stimulator packaged in a container, such as a vial or bottle, and further comprising a label attached to or packaged with the container, the label describing the contents of the container and providing indications and/or instructions regarding use of the contents of the container to treat one or more disease states as described herein.

[0308] In one aspect, the kit is for treating a disorder associated with elevated hepcidin levels and comprises an antihepcidin antibody and an erythropoiesis stimulator. The kit may optionally further include iron for oral or parenteral, e.g. intravenous, administration. In another aspect, the kit comprises an anti-hepcidin antibody and a label attached to or packaged with the container describing use of the anti-hepcidin antibody with an erythropoiesis stimulator. In yet another aspect, the kit comprises an erythropoiesis stimulator and a label attached to or packaged with the container describing use of the erythropoiesis stimulator with an anti-hepcidin antibody. In certain embodiments, an anti-hepcidin antibody and an erythropoiesis stimulator, and optionally the iron, are in separate vials or are combined together in the same pharmaceutical composition. In yet another aspect, an anti-hepcidin antibody described herein is combined with iron in a single pharmaceutical composition. In yet another embodiment, the erythropoiesis stimulator is combined with iron in a single pharmaceutical composition.

[0309] As discussed above in the combination therapy section, concurrent administration of two therapeutic agents does not require that the agents be administered at the same time or by the same route, as long as there is an overlap in the time period during which the agents are exerting their therapeutic effect. Simultaneous or sequential administration is contemplated, as is administration on different days or weeks.

[0310] The therapeutic and diagnostic kits disclosed herein may also be prepared that comprise at least one of the antibody, peptide, antigen binding fragment, or polynucleotide disclosed herein and instructions for using the composition as a diagnostic reagent or therapeutic agent. Containers for use in such kits may typically comprise at least one vial, test tube, flask, bottle, syringe or other suitable container, into which one or more of the diagnostic and/or therapeutic composition (s) may be placed, and suitably aliquoted. Where a second therapeutic agent is also provided, the kit may also contain a second distinct container into which this second diagnostic and/or therapeutic composition may be placed. Alternatively, a plurality of compounds may be prepared in a single pharmaceutical composition, and may be packaged in a single

container means, such as a vial, flask, syringe, bottle, or other suitable single container. The kits of the present invention will also typically include a means for containing the vial(s) in close confinement for commercial sale, such as, e.g., injection or blow-molded plastic containers into which the desired vial(s) are retained. Where a radiolabel, chromogenic, fluorigenic, or other type of detectable label or detecting means is included within the kit, the labeling agent may be provided either in the same container as the diagnostic or therapeutic composition itself, or may alternatively be placed in a second distinct container means into which this second composition may be placed and suitably aliquoted. Alternatively, the detection reagent and the label may be prepared in a single container means, and in most cases, the kit will also typically include a means for containing the vial(s) in close confinement for commercial sale and/or convenient packaging and delivery.

[0311] A device or apparatus for carrying out the diagnostic or monitoring methods described herein is also provided. Such an apparatus may include a chamber or tube into which sample can be input, a fluid handling system optionally including valves or pumps to direct flow of the sample through the device, optionally filters to separate plasma or serum from blood, mixing chambers for the addition of capture agents or detection reagents, and optionally a detection device for detecting the amount of detectable label bound to the capture agent immunocomplex. The flow of sample may be passive (e.g., by capillary, hydrostatic, or other forces that do not require further manipulation of the device once sample is applied) or active (e.g., by application of force generated via mechanical pumps, electroosmotic pumps, centrifugal force, or increased air pressure), or by a combination of active and passive forces.

[0312] In related embodiments, also provided is a processor, a computer readable memory, and a routine stored on the computer readable memory and adapted to be executed on the processor to perform any of the methods described herein, and/or to generate as output the detected level of hepcidin and a threshold or range of threshold levels considered "normal", such that levels outside the "normal" range correlate with one or more of the conditions as described herein. In some embodiments, computer readable media containing programs or routines to perform similar functions are also provided. Examples of suitable computing systems, environments, and/ or configurations include personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, or any other systems known in the art.

Non-Therapeutic Uses for Anti-Hepcidin Antibodies

[0313] The antibodies disclosed herein may be used as affinity purification agents for target antigen or in diagnostic assays for target antigen, e.g., detecting its expression in specific cells, tissues, or serum. The antibodies may also be used for in vivo diagnostic assays. Generally, for these purposes the antibody is labeled with a radionuclide (such as ¹¹¹In, ⁹⁹Tc, ¹⁴C, ¹³¹I, ¹²⁵I, ³H, ³²P or ³⁵S) so that the site can be localized using immunoscintiography.

[0314] The antibodies disclosed herein may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, such as ELISAs, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc.

1987). The antibodies may also be used for immunohistochemistry, to label cell samples using methods known in the art.

EXAMPLES

Example 1

Preparation of Anti-Human Hepcidin Monoclonal Antibodies

[0315] Monoclonal antibodies can be prepared by various procedures generally as described in copending U.S. patent application Ser. No. 12/022,515, incorporated by reference herein in its entirety. For example, XenomouseTM IgG2κλ and IgG4κλ mice were immunized with KLH-conjugated human hepcidin (SEQ ID NO: 9) using standard methods. 23,040 IgG2 supernatants and 11,520 IgG4 supernatants were screened at a single concentration against biotinylated human hepcidin anchored to a plate. From this screen 617 IgG2 and 1013 IgG4 supernatants were tested for binding to both human and mouse biotinylated hepcidin using an antibody capture ELISA in which the amount of antibody captured was limited to minimize the effect of concentration differences between supernatants. Top-ranking samples (70 IgG2 and 110 IgG4) were further characterized in a bridging ELISA which measures solution-phase hepcidin-antibody binding over a range of antibody concentrations. This assay provided a relative affinity ranking of antibody binding.

[0316] Supernatants from each of the IgG2 and IgG4 panels were designated as follows: 1C9 (SEQ ID NOs: 107-116), 3B3 (SEQ ID NOs: 117-126), 4E1 (SEQ ID NOs: 127-136), 7A3 (SEQ ID NOs: 137-146), 9D12 (SEQ ID NOs: 147-156), 12B9 (SEQ ID NOs: 157-166), 15E1 (SEQ ID NOs: 167-176), 18D8 (SEQ ID NOs: 310-319), 19C1 (SEQ ID NOs: 320-329), 19D12 (SEQ ID NOs: 290-299), 19H6 (SEQ ID NOs: 300-309), 23F11 (SEQ ID NOs: 177-186), 26F11 (SEQ ID NOs: 187-196), 18B11 (SEQ ID NOs: 331-339), 19B8 (SEQ ID NOs: 341-349), 20E12 (SEQ ID NOs: 351-359), 22F12 (SEQ ID NOs: 361-369), 22H10 (SEQ ID NOs: 371-379), 23A11 (SEQ ID NOs: 381-389) and 24E4 (SEQ ID NOs: 391-399).

[0317] Generally, the binding affinities of these antibodies to human hepcidin were determined by BIAcore, which were then confirmed by KinExA if the K_D as estimated by BIAcore was below 100 pM. The binding affinity of antibody 18B11, however, was determined by KinExA without the BIAcore assay. The K_D for the lead antibodies were in the range of between 1 μ M and more than 400 μ M.

[0318] Relative species cross-reactivity and binding to Hepc20 (SEQ ID NO: 96) was determined by competition ELISA. 18B11 was observed to be cross-reactive with cynomolgus monkey hepcidin and not-significantly cross-reactive with mouse hepcidin. Antibody 18B11 competes with antibody 23F11 for binding to human hepcidin.

Example 2

Generation and Selection of Human Antibodies with Certain Pharmacokinetic Properties

[0319] 2,522 hepcidin-specific antibodies were screened for differential binding profiles to human hepcidin at pH 7.4 and pH 6.0 by ELISA. 50 μ L of Neutravidin (Pierce) at 8 μ g/mL in 1×PBS was coated upon a Nunc Maxisorp 384-well plate, and incubated at 37° C. for 1 hr. After blocking the wells with 0.1% BSA/PBS/0.05% Tween20 for 1 hour at room temperature, plates were washed six times with PBS/0.05% Tween20. 25 μ L of mono-biotinylated hepcidin at 50 ng/mL

in 0.1% BSA/PBS/0.05% Tween20 was added to the 384well plate, and incubated at room temperature for 1 hour. The plates were next washed six times with PBS/0.05% Tween20. Starting hepcidin antibody concentrations were normalized to 1 µg/mL for pH 5.5 and 6.0 conditions and to 100 ng/mL for pH 7.4 conditions. The hepcidin antibodies were serially diluted 3-fold in PBS/1% NFDM pH 7.4 and 4-fold in PBS/ 1% NFDM pH 6.0 and 5.5. The dilutions and titrations were performed in polypropylene 96-well dilution plates, and then were transferred in duplicate to a Neutravidin-coated 384well plate. The biotinylated hepcidin and antibodies were incubated for 2 hours at room temperature. The plate was next washed six times with PBS/0.05% Tween20. 25 μL of goat anti-huIgG-horseradish peroxidase at a 1:7000 dilution in 0.1% BSA/PBS/0.05% Tween20 was next added to each well of the assay plate. The plate was finally washed six times in PBS/0.05% Tween20. Enhanced K-Blue 3,3',5,5'-Tetramethylbenzidine (TMB) Substrate (Neogen) was added and the reaction stopped using 1 M H₂PO₄ after 10 minutes of incubation at room temperature. The absorption was measured at 450 nm on a plate reader. Binding data were analyzed by non-linear regression analysis (sigmoidal dose-response, variable slope) to generate EC50 values using GraphPad Prism® software. From this screen 243 antibodies demonstrated a >2-fold difference in binding at pH 7.4 versus pH 6.0. The top 32 well supernatants were rescreened for a third time over a range of antibody dilutions at pH 7.4 and pH 6.0. Antibodies 18B11, 19B8, 20E12, 22C11, 22F12, 22H10, 23A11, 24E4 and 25H6 were selected for subcloning.

[0320] The binding affinities of these antibodies to human hepcidin were determined by KinExA and the off-rates were determined by BIAcore. At a 1:250 dilution, all of the antibodies tested demonstrated an about 10-fold reduction in affinity for hepcidin at pH 6 compared to pH 7.4.

Example 3

Engineering of Antibody with Differential pH Binding

[0321] Introduction of one or more histidine residues in the light and/or heavy variable region of an antibody can provide antibodies that exhibit differential pH binding to its antigen. Histidine is the amino acid most sensitive to pH shifts from 7.4 to 6.0, as the imidazole side chain of histidine has a pKa just over 6, varying higher or lower depending on the environment of the amino acid. This technique can be applied to any anti-hepcidin antibodies, including those described herein.

[0322] A crystal structure model of the Fv portion of the anti-hepcidin antibody 15E1 was prepared. Using this structure model, all 62 CDR residues of antibody 15E1, using the Kabat definition, were selected for mutation, along with framework residues that were at least 10% exposed and within 4.5 Å of a CDR residue, resulting in an additional 31 residues for mutation. Additional positions were selected for mutation by visual inspection of the structure model for amino acids in proximity to the CDRs or selected framework residues. The encoding DNA was mutated to provide histidine mutations at single or multiple positions within the amino acid sequence. Mutations which produced some pH differential binding effect as single mutations can be combined as double, triple or more multiple mutations. The histidine mutations displayed collectively below were engineered at any one or more amino acids in which the "Mutants" sequence identifies a change to a histidine in the following diagram:

15E1	Light		111111111 SYELTQPPSVSVSPGQTATITCSGDKLGERY	
15E1	Light	Mutants	НННЦННРРSVSVSPGQTATIHCHННННННН	HHWYQQRPGQSPHLVIHHH
15E1	Light		22222 SKRPSGIPERFSGSNSGNTATLTISGTQAMD	3333333333 EADYFCQAWYSSTNVLFGG
15E1	Light	Mutants	HHHHHHHHRFHHHHHHHHATLTISGTQAMD	EADYFCННННННННННFGG
15E1	Light		GTKLTVLGQP	
15E1	Light	Mutants	GTKLTVLGQP	
15E1	Heavy		1 QVQLVESGGGVVQPGRSLRLSCAASGFTFSS	1111 2 YGMHWVRQAPGKGLEWVAV
15E1	Heavy	Mutants	QHQLVESGGGVVQPGRSLRLSCAASGHHFHH	HHHHWVRQAPGKGLHHVAH
15E1	Heavy		22222222222222 IWYAESNKYYADSVKGRFTISRDNSKNTLYL	33 QMNSLRAEDTAVYYCARAQ
15E1	Heavy	Mutants	НИННИНИНИННИННИННИН HRHHSKNTLYL	QMNSLHAEDTAVYYCARHH
15E1	Heavy		333333333 EGIAPDAFDIWGQGTMVTVSS	
15E1	Heavy	Mutants	НННННННННЯQGTMVTVSS	

Expression of Mutant Constructs

[0323] Mutations were introduced into wild-type constructs in vector pTT5 (heavy and light chains on separate vectors) using a Quickchange II kit (Stratagene #200523) and were transiently tr

ns were introduced into wild-type con-	
	S66H
pTT5 (heavy and light chains on separate	G67H
Quickchange II kit (Stratagene #200523) and	N68H
transfected into 293-6E cells (NRCC).	Т69Н
ransiceted into 293 of cens (tyree).	Q88H
	А89Н
	W90H
_	Y91H
Light Chain Mutation	S92H
	S93H
S1H	Т94Н
Y2H	N95H
E3H	V96H
T5H	L97H
Q6H	Heavy Chain Mutation
T21H	
S23H	V2H
G24H	F27H
D25H	T28H
К26Н	S30H
L27H	S31H
G28H	Y32H
Е29Н	G33H
R30H	M34H
Y31H	E46H
А32Н	W47H
С33Н	V50H
V44H	I51H
Y48H	W52H
Q49H	Y53H
D50H	A54H
S51H	E55H
К52Н	S56H
R53H	N57H
P54H	K58H
S55H	Y59H
G56H	Y60H
I57H	A61H
P58H	D62H
E59H	
S62H	S63H
G63H	V64H
S64H	K65H
N65H	G66H

-continued

-continued			
R67H T69H S71H D73H N74H			
R87H A99H Q100H E101H G102H I103H A104H			
P105H D106H A107H F108H D109H I110H W111H			

KinExA Solution Equilibrium Binding Analysis for Antibodies 15E1, 15E1 Variants and 18B11 to Binding to Human Hepc.

[0324] SA-Sepharose beads were pre-coated with biotinylated human hepcidin (SEQ ID NO: 9) and blocked with BSA according to manufacturer's instructions. Antibodies and hepcidin were diluted in PBS/0.1% BSA/0.05% NaN₃ buffer. Fixed concentrations of antibodies 15E1, 15E1 W52H, 15E1 A99H, 15E1 N521-1, 15E1 A107H and 18B11 were incubated with various concentrations of human hepcidin at room temperature for 8 hours before being run through the human hepcidin-coated beads. The amount of the bead-bound antibody was quantified by fluorescently (Cy5)-labeled goat antimurine-IgG (H+L) antibody (Jackson Immuno Research, West Grove, Pa.). The binding signal is proportional to the concentration of free antibody at equilibrium. Dissociation equilibrium constant (K_D) was obtained from nonlinear regression of the competition curves using a dual-curve onesite homogeneous binding model (KinExATM Pro software). The results are set forth below in Table 3.

TABLE 3

Antibody	K_D	K_D range
18B11	7.4 nM	2-23.4 nM
15E1 (wild type)	37 pM	13-75 pM
15E1 A107H	31 pM	13-58 pM
15E1 A99H	>10 nM	N/A
15E1 N57H	3 nM	1.6-4.7 nM
15E1 W52H	1.7	5.8-16.5 nM

[0325] Differential pH binding of the antibodies listed above in Table 3 was then determined by ELISA. 50 μL of Neutravidin (Pierce) at 8 $\mu g/mL$ in 1×PBS was coated upon a Nunc Maxisorp 384-well plate, and incubated at 37° C. for 1 hr. After blocking the wells with 0.1% BSA/PBS/0.05% Tween20 for 1 hour at room temperature, plates were washed six times with PBS/0.05% Tween20. 25 μL of mono-biotiny-lated hepcidin at 50 ng/mL in 0.1% BSA/PBS/0.05% Tween20 was added to the 384-well plate, and incubated at room temperature for 1 hour. The plates were next washed six times with PBS/0.05% Tween20. Starting hepcidin antibody concentrations were normalized to 1 $\mu g/mL$ for pH 5.5 and 6.0 conditions and to 100 ng/mL for pH 7.4 conditions. The

hepcidin antibodies were serially diluted 3-fold in PBS/1% NFDM pH 7.4 and 4-fold in PBS/1% NFDM pH 6.0 and 5.5. The dilutions and titrations were performed in polypropylene 96-well dilution plates, and then were transferred in duplicate to a Neutravidin-coated 384-well plate. The biotinylated hepcidin and antibodies were incubated for 2 hours at room temperature. The plate was next washed six times with PBS/ 0.05% Tween20. 25 µL it of goat anti-huIgG-horseradish peroxidase at a 1:7000 dilution in 0.1% BSA/PBS/0.05% Tween 20 was next added to each well of the assay plate. The plate was finally washed six times in PBS/0.05% Tween20. Enhanced K-Blue 3,3',5,5'-Tetramethylbenzidine (TMB) Substrate (Neogen) was added and the reaction stopped using 1 M H₃PO₄ after 10 minutes of incubation at room temperature. The absorption was measured at 450 nm on a plate reader. Binding data were analyzed by non-linear regression analysis (sigmoidal dose-response, variable slope) to generate EC₅₀ values using GraphPad Prism® software. Single mutations of wild type 15E1 that produced at least 1.5 fold increase in EC50 as the pH was lowered to 6.0 included $L_{27}H$ (light chain), A89H (light chain), W52H (heavy chain), N57H (heavy chain), A99H (heavy chain), and A107H (heavy chain). Double combinations of these mutants were made. Multiple mutants of wild type 15E1 with at least a 5.5 fold increase in EC50 as the pH was lowered to 6.0 included A107H (heavy chain)/A89H (light chain), A107H (heavy chain)/L27H (light chain), A107H (heavy chain)/N57H (heavy chain), and A107H (heavy chain)/A99H (heavy chain). Representative results are set forth in Table 4 below.

TABLE 4

EC50 ng/mL			
Sample	pH 7.4	pH 6.0	pH 5.5
18B11	2.7	244.1	NC
15E1 (wild type)	2.3	2.3	2.3
15E1 L27H	4.5	6.5	8
15E1 A89H	5.4	10.6	12
15E1 W52H	4.5	5.8	17
15E1 N57H	1.8	4	3.2
15E1 A99H	4.1	10.7	29.1
15E1 A107H	2	3.6	3.7
15E1 N57H A107H	7.3	75.6	NC
15E1 A99H A107H	3.0	5.5	16.1
15E1 A107H A89H	6.0	34.7	NC
15E1 A107H L27H	4.3	19.3	316

[0326] Results indicated that antibody 18B11 demonstrated a 2-log lower apparent binding affinity and that 15E1 N57H A107H demonstrated a 1-log lower apparent binding affinity for hepcidin at pH 6.0 compared to pH 7.4.

Example 4

Off-Rate Binding Analysis for Human Antibody 18B11

[0327] Off-rate analysis of dissociation at different pHs was also performed. A slow off-rate is expected to predict increased binding interaction over a longer period of time, while a faster off-rate is expected to predict decreased binding interaction. For example, a faster off-rate at lower pH is expected to predict greater release of antigen at lower pH. Solution equilibrium binding analysis was performed using

BIAcore to study the off-rates of antibodies 1S1, 1S3, 2.7, 18B11, 23F11 and 26F11 with recombinant human hepcidin (SEQ ID NO: 9).

Preparation of Biacore Chip Surfaces

[0328] Immobilization of recombinant human hepcidin (rhuHepc) to a BIAcore sensor chip surface was performed according to manufacturer's instructions at a flow rate 10 μ L/min of running buffer (DPBS: Dulbecco's Phosphate Buffer Salinel X, no CaCl or MgCl, with 0.005% Biacore surfactant P-20). The carboxylated matrix of the sensor chip was first activated with a 60 μ L injection of a mixture containing 0.2 M EDC(N-ethyl-N-(dimethylamine-propyl)carbodiimide in water, from BIAcore) and 0.05M NHS (N-hydroxysuccinimide in water, from Biacore). 55 μ L of recombinant human hepcidin (1 μ g/ml in 10 mM Na-acetate pH4.0) was injected to immobilize onto the sensor chip. The excess reactive groups of the sensor chip were deactivated with an injection of 60 μ L of ethanolamine (1.0M, from Biacore).

BIAcore Analysis

qccaacc

[0329] After rhuHepc was immobilized on the CM5 chip with low density, 50 nM of antibodies 1S1, 1S3, 2.7, 18B11, 23F11 and 26F11 were injected over and bound the rhuHepc surface at pH 7.4. Dissociation buffers with pH 7.4, pH6 and pH 5.5 were run over the bound surface. The dissociation curves were obtained. Results indicated that antibody 18B11 demonstrated a significant difference in off rate at pH 7.4 ($>1 \times 10^{-2}$) compared to pH 5.5. The other antibodies tested did not demonstrate a significant difference in off rate at pH 7.4, 6.0 or 5.5. See FIG. 1.

Example 5

In Vitro Hepcidin Activity in an Iron-Responsive B-Lactamase Assay can be Neutralized by Anti-Hepcidin Antibodies

[0330] Hepcidin causes ferroportin to be internalized and removed from the cell surface, thus inhibiting release of iron and raising intracellular iron concentrations. The effect of anti-human hepcidin antibodies on this hepcidin-mediated iron sequestration was evaluated in vitro. A 293 cell line containing a doxycycline-inducible ferroportin (Fpn) expression construct as well as a beta-lactamase (BLA) expression construct containing one copy of the 5' iron response element (IRE) from ferritin having the following nucleotide sequence:

(SEQ ID NO: 103) teggeccegectectgecaccgcagattggccgctagccctccccgage gccctgcctccgagggccgcaccataaaagaagccgccctagccac gtccctcgcagttcggcgtcccgcgggtctgtctcttgcttcaacag tgtttggacggaacagatccggggactctcttccagcctccgaccgccctccgattccttctccgcttgcaacctccgggaccatcttctcggccatc tcctgcttctgggacctgccagcaccgtttttgtggttagctccttctt

that regulates mRNA translation was constructed. These 293/ Fpn/BLA cells, taken from a 70-80% confluent culture, were plated at $2.8{\times}10^5$ cells/mL in DMEM (Invitrogen Cat#

11965) 5% FBS (Invitrogen. Cat# 10099-141) PSQ (Invitrogen Cat# 10378-016), 90 µL/well (25,000 cells/well) in Bio-Coat Poly-D Lysine coated plates (Becton-Dickinson Cat# 35-6640) and incubated at 37C with 5% CO₂. At the end of the same day, a solution of assay medium (DMEM 5% FBS PSQ) with 100 ug/mL doxycycline was made, 10 μL/well of it added to the plate, and the plate incubated overnight or for at least 20 hours. The next day, media was removed from the wells and replaced with premade mixes of DMEM 5% FBS PSQ, 2.5 μg/mL ferric citrate, 50 ng/mL synthetic human hepcidin and serial dilutions of the antibodies (24E4, 23F11, 18B11, 2.7, 2.41, and Ab43), all prepared in a 96-well polypropylene deep-well block plate immediately before addition to the assay plate. Mixtures were added at 100 μL/well and incubated overnight at 37C, 5% CO₂ in a cell culture incubator. Plates were then removed from the incubator and equilibrated to room temperature for 10 minutes before adding 20 µL/well of the prepared Invitrogen Gene-Blazer CCF4 A/M development reagent (Invitrogen Kit# K1085) and incubating for 90 minutes in the dark. Development reagent was also added to 16 wells of a control assay plate without cells containing 100 µL assay medium (DMEM 5% FBS PSQ) and incubated for the same time. Blue & Green fluorescence signals were then read on an Envision Multilabel Reader (Perkin-Elmer Inc.) by exciting at 409 nm and reading emissions at 447 nm (blue) and 520 nm (green). The results are depicted in FIGS. 2 and 3. It was determined that mAb 43, 2.7, 2.41, 18B11, 23F11, 24E4 decreased intracellular concentration of iron at an EC $_{50}$ of $1.380\times10^{-8},\,1.700\times10^{-8},\,1.636\times10^{-8},\,2.0\times10^{-8},2.3\times10^{-9}$ and 5.0×10^{-9} , respectively.

Example 6

Anti-Hepcidin Antibodies Neutralize Human Hepcidin in Mice

[0331] Activity of anti-human hepcidin antibodies was evaluated in vivo in mice that were administered human hepcidin in an amount sufficient to generate a hypoferremic response. On day 0, female C57BL/6 mice were injected subcutaneously with a murine monoclonal antibody (Ab2.7) directed against human hepcidin. Control mice received murine IgG1 as an isotypic control. At day 3, the mice received a single intraperitoneal injection of 25 µg E. coliderived recombinant human Hepcidin (rhHepc). Serum iron levels were analyzed two hours later. Control animals treated with saline had normal serum iron levels, while animals treated with hepcidin and an isotype control antibody showed hypoferremia. Results are set forth in FIG. 4B. Both 1 mg and 0.5 mg of mAb2.7 provided statistically significant protection from the hypoferremic response. Although a reduction in hypoferremia was observed at the 0.25 mg dose of Ab 2.7, the lower doses (0.25 and 0.1 mg) were defined as non-neutralizing doses. Statistics represent ANOVA with a Dunnett's post-hoc test comparing all groups against the saline control.

Example 7

Antibody Neutralization of AAV-Delivered Hepcidin Restores Normal Early Red Blood Cell Characteristics

[0332] AAV-mediated human hepcidin expression in mice produces a microcytic, hypochromic anemia consistent with iron deprivation. The activity of anti-human hepcidin anti-bodies was evaluated in vivo in these mice overexpressing

human hepcidin. Male C57B1/6 mice were injected with AAV $(1.5\times10^{12} \text{ particles/mouse}, \text{I.V.})$ containing expression cassettes for either human hepcidin or beta-galactosidase (β -gal) as a negative control. The mice were left for two weeks to allow constitutive production of huHepc before being treated with 1 mg/mouse of Ab 2.7 or isotype control (mulgG1) at various dosing frequencies (1×, 2× and 4× per week) as shown in FIG. 5A. Blood was drawn on the fifth day for serum iron levels and determination of early red blood cell (reticulocyte) characteristics (reticulocyte count, reticulocyte hemoglobin content (CHr), and reticulocyte mean cell volume (Retic. MCV))

[0333] Results are set forth in FIGS. 5B-5E. Serum iron levels were restored to normal in mice receiving $4\times$ dosing of Ab2.7 but not isotype control. All mice receiving Ab2.7 showed increased reticulocyte production. The reticulocyte hemoglobin content (CHr) was normal in mice given the $4\times$ and $2\times$ dosing of Ab 2.7, but hypochromicity is still seen in groups with $1\times$ dosing, or the isotype control group. Treatment with Ab2.7 at the $4\times$ and $2\times$ dose restored normal volume to reticulocytes (Retic. MCV) but microcytosis was still present in the $1\times$ and isotype control groups. Statistical comparisons to β -gal injected animals with isotype control treatment were determined to look for restoration of normal red cell characteristics (ANOVA with Dunnett's post-hoc test)

[0334] In another experiment, the activity of anti-human hepcidin antibodies 1S1, 18B11 and 24E4 was evaluated in vivo in mice overexpressing human hepcidin. C57B1/6 mice (4 weeks of age) were obtained from Charles River Laboratories. On Week 0, mice (n=5 per group) were injected via the tail vein with AAV containing human hepcidin (hHepc) or green fluorescence protein (GFP) as an expression control. Mice were maintained for 2 weeks after viral introduction to allow for protein expression before treatment with antibody. Mice were treated with either 1 mg or 0.5 mg of each antibody 1S1, 18B11 and 24E4 (subcutaneous injection, 0.2 ml/mouse in PBS) on Days 14 and 16 following viral introduction. Blood was collected on Day 18, and response to antibody administration was measured as a change in reticulocyte characteristics (reticulocyte cellular hemoglobin content) using an ADVIA 2120 Hematology Analyzer (Bayer Corporation, Tarrytown, N.Y.). Total serum hepcidin levels (free and bound) were measured by ELISA to determine the degree of complex formation. All results were expressed as the mean±standard error of the mean. ANOVA and a Dunnett's post test using Graphpad Prism software v4.0 (San Diego, Calif.) assessed statistical significance of differences (* denotes p<0.05, and ** denotes p<0.01 compared to AAVhHepc+isotype control group).

[0335] After 18 days, the reticulocytes in the AAV-hHepc+isotype treated control mice had reduced hemoglobin content (CHr), rendering them hypochromic. Animals treated with anti-hepcidin antibodies 1S1, 18B11 or 24E4 at either 1 mg or 0.5 mg/mouse had normal CHr values as compared to AAV-GFP control mice, indicating that these antibodies are efficacious in this model in restoring normal early red cell characteristics. See FIGS. 6A and 6B.

[0336] Results indicated that mice treated with the 1 mg dose of antibody 18B11 had a 10-fold reduction in total serum hepcidin compared to animals treated with antibody 1S1 or antibody 24E4 (FIG. 7A). Similar results were obtained at the 0.5 mg/mouse dose (FIG. 7B). The markedly reduced amount

of total hepcidin seen with antibody 18B11, is consistent with hepcidin clearance through endosomes.

Example 8

Viral Hepcidin Over-Expression Results in Hypo-Responsiveness to Erythropoietin

[0337] The following Example investigated the role of hepcidin and anti-hepcidin antibodies in erythropoietin hyporesponsive mice.

[0338] Titration of AAV-mediated human hepcidin expression in mice causes an increase in serum hepcidin levels and dose-dependent hypoferremia, as shown in FIG. 8. Doses of AAV-human hepcidin were selected that gave an erythropoietin resistant phenotype and expressed levels of hepcidin in a similar range to that detected in cancer patient samples in previous studies (as described in co-pending co-owned U.S. patent application Ser. No. 11/880,313 and International Publication No. WO 2008/011158, the disclosures of which are incorporated herein by reference in their entirety). Male C57BL/6 mice were injected with AAV expressing human hepcidin or GFP as an expression control (n=4 per group). The mice were injected through the tail vein (human hepcidin, from 1×10^{12} to 3×10^{12} particles/mouse; GFP 3×10^{12} particles/mouse). Protein expression was allowed to develop for two weeks prior to harvest. At two weeks, serum was collected from the mice and iron and hepcidin levels were determined. Results are reported in FIG. 8.

[0339] In order to evaluate hepcidin's effect on erythropoietin resistance, male C57BL/6 mice were injected with AAV (3×10¹² particles/mouse, hepatic portal vein delivery) containing expression cassettes for either human hepcidin or GFP as a negative control (n=5 per group). The mice were left for three weeks to allow constitutive production of human hepcidin, and then bled to determine baseline hemoglobin (Hb) levels. The mice were treated with darbepoetin alfa (100 µkg/mouse) or saline as a negative control at four weeks. At five weeks, hemoglobin levels were again measured. Results are shown in FIG. 9. Mice over-expressing human hepcidin are resistant to high doses of darbepoetin alfa. Resistance to darbepoetin alfa demonstrates that elevated hepcidin levels are sufficient to cause hypo-responsiveness to erythropoetin.

Example 9

Combination Therapy with Hepcidin Antibody and an Erythropoiesis Stimulator in a Viral Hepcidin Over-Expression Model

[0340] Treating mice that possessed an erythropoetin resistant phenotype with an anti-hepcidin antibody restored responsiveness to treatment with darbepoetin alfa. Male C57BL/6 mice were injected with AAV (5×10^{12} particles/mouse, I.V.) containing genes coding for either human hepcidin or GFP as an expression control (n=5 per group). After allowing two weeks to establish constitutive protein expression, mice were bled to determine baseline hemoglobin (Hb) levels, then treated with Ab 2.7 (1 mg/mouse) or isotype control at various dose frequencies. On the day after the first dose, they were treated with darbepoetin alfa (100 µg/kg, subcutaneous). A schematic of the dosing schedule appears in FIG. 10A.

[0341] Neutralization of hepcidin restores responsiveness to darbepoetin alfa. Monday-Wednesday-Friday dosing of the antibody led to a partial response to darbepoetin alfa

treatment as measured by an increase in Hb levels; a cohort with the same antibody dosing without darbepoetin alfa treatment showed no rise in Hb levels. (See FIG. 10B) A maximal response to darbepoetin alfa was achieved in mice receiving daily (Monday through Friday) dosing of Ab 2.7. (See FIG. 10C) Two and three doses of antibody in combination with darbepoetin alfa treatment led to a partial response, as measured by Hb levels. (See FIG. 10D) Antibody dose and proximity of antibody dose to darbepoetin alfa treatment affected overall Hb response to anti-hepcidin antibody treatment, as shown in FIG. 10E (results varying from the control where p<0.01 by ANOVA with Dunnett's post-hoc test are noted with double asterisks). Thus, antibody-mediated neutralization of hepcidin was shown to be an effective treatment for anemia caused by elevated hepcidin levels.

Example 10

Combination Therapy with an Anti-Hepicin Antibody and Erythropoiesis Stimulator in a Mouse Model of Inflammatory Anemia

[0342] Combination therapy with an anti-hepcidin antibody and an erythropoiesis stimulator was also evaluated in a murine inflammatory anemia model as follows.

[0343] Mice were generated such that murine hepcidin 1 was knocked out and replaced with human hepcidin. Female mice, both homozygous for human hepcidin expression and wild-type littermate controls, were injected with *Brucella abortus* (2×10⁸ particles/mouse, I.P.) on day 0 and then bled on day 6 to assess hemoglobin levels. The mice were then treated with either Antibody 2.7 or an isotype control antibody (1 mg/mouse/day) on days 6 through 9. Darbepoetin alfa was administered (100 µg/kg/mouse) on day 7, and Hb levels evaluated on day 13. A schematic of the protocol is shown in FIG. 11A.

[0344] Wild-type control mice which still possessed the mouse hepcidin 1 gene did not respond to darbepoetin alfa either with or without Ab 2.7. (See FIG. 11B) Human knockin mice treated with Antibody 2.7 exhibited a restored responsiveness to darbepoetin alfa treatment, as shown by the maintenance of stable hemoglobin levels. (See FIG. 11C).

[0345] These results demonstrate that anti-hepcidin antibodies can be used to neutralize hepcidin under conditions of hepcidin excess and restore responsiveness to erythropoietic agents in hepcidin-mediated anemias such as the anemia of inflammation.

Example 11

Measurement of Hepcidin Level in Patients

[0346] The level of hepcidin in human patients was measured by spectrometry techniques as previously described in co-pending co-owned U.S. patent application Ser. No. 11/880,313 and International Publication No. WO 2008/011158, the disclosures of each of these applications are incorporated herein by reference in their entirety. The method is reproduced below.

[0347] Samples from patients suffering from anemia of cancer (obtained from ProteoGenex) or volunteers (control) were collected. 100 μL of each sample, serum blanks and calibration standards consisting of seven non-zero concentrations in duplicates (10, 25, 50, 100, 250, 500, 1000 ng/mL) were extracted by SPE using an Oasis HLB mElution 96-well plate (Waters, Milford, Mass.). Washing solvent was 30%

methanol/water with a pH of about 10 adjusted with ammonium hydroxide. Elution solvent was 90% methanol/water solution with a pH of about 5 adjusted with acetic acid. The SPE plate was activated with 500 μL methanol and conditioned with 500 μL water, then 100 μl , serum sample and 200 μL internal standard were loaded onto the elution plate, washed with 350 μL water and 350 μL washing solvent. Elution was done using 100 μL elution solvent and diluted with 100 μL water. The resulting 200 μL eluate was analyzed by LC-MS/MS.

[0348] 20 μ l of each extracted sample was injected onto a Polaris C18A, 5 μ m HPLC column (2.1×50 mm, Varian). The LC flow rate was set to 300 μ l/min. The HPLC mobile phase A was 5:95 methanol/water, and mobile phase B was 95:5 methanol/water, both containing 0.1% formic acid. The gradient conditions were set as follows: 0-0.1 min, isocratic 2% B/98% A; 2% B to 95% B at 0.1-4.5 min; 95% B at 4.5-4.9 min; 95% B to 2% B at 4.9-5.0 min; 5.0-6.0 min, isocratic 2% B.

[0349] A Sciex API4000 triple quadrupole mass spectrometer from Applied Biosystems (Foster City, Calif.) with Turbo ESI source was used for hepcidin detection in MRM mode with ion transition of m/z 930.60 to m/z 110.15. Quantification was achieved by comparing the ratio of the LC peak areas of the hepcidin and the internal standard to the ratios obtained from a series of standards where the amounts of hepcidin and internal standard were known.

[0350] This experiment allowed for the determination of the serum levels of hepcidin in a control population presumed to contain a large number of healthy individuals as well as the serum level of hepcidin from patients suffering anemia of cancers (AoC). The results are shown in FIG. 12.

[0351] Each patient's sample was then analyzed for other iron index concentrations to determine whether a patient had inflammation or iron deficiency anemia (FIG. 13). The parameters were measured as follows: serum iron, UIBC, ferritin, and CRP were measured on an Olympus AU400 clinical laboratory analyzer using standard procedures; sTfR was measured using a standard ELISA method (R&D systems).

[0352] As described in copending U.S. patent application Ser. No. 12/022,515, incorporated by reference herein in its entirety, prohepcidin levels measured using the DRG prohepcidin ELISA kit, however, do not correlate with the mature hepcidin levels of the patients, nor do prohepcidin levels correlate with the inflammatory status of patients. Hepcidin, but not prohepcidin, shows a relationship with CRP in anemia of cancer patients, and can therefore be used as a marker of inflammation.

[0353] Distinguishing the anemia of inflammation (AI) from iron deficiency anemia (IDA) and mixed anemia (components of both AI and IDA) is complicated since most of the commonly used lab parameters are influenced by acute phase responses. A ratio utilizing soluble transferrin receptor (sTfR) and ferritin (Ft) values has been described in the literature as a means to provide a more accurate diagnosis. See Punnonen et al., *Blood*, 89:1052-57, 1997. Anemia of inflammation is characterized by a low sTfR/log Ft quotient (values less than one), while a high ratio is indicative of IDA. Hence, the sTfR/log Ft ratio may serve as an accurate predictor of the three conditions when combined with an inflammatory marker to aid diagnosis of mixed anemia from absolute IDA.

[0354] Hepcidin levels are strongly related to sTfR/log Ft levels in AoC patients (r=-0.6407; P<0.0001), thus aiding patient diagnosis.

[0355] Using a decision tree combining CRP as a marker of inflammation and sTfR/logFt, anemia of cancer patients could be sub-divided into those with AI, with mixed anemia, with IDA and with an anemia of unknown origin, designated 'other' (FIG. 14A). Patients with elevated hepcidin levels were all observed to have either AI or a mixed anemia. (FIG. 15). Patients with low or absent hepcidin levels were observed to have either IDA or anemia of unknown origin. Hepcidin levels, as measured by the antibody-based immunoassay methods described in copending U.S. patent application Ser. No. 12/022,515, incorporated by reference herein in its entirety, or the mass spectrometry-based method quantitation method described in co-pending co-owned U.S. patent application Ser. No. 11/880,313 and International Publication No. WO 2008/011158, the disclosures of which are incorporated herein by reference in their entirety, and discussed in detail above, can be used to diagnose inflammatory anemia.

Example 12

Monoclonal Antibodies in a Sandwich Immunoassay for Hepcidin

[0356] The following Example describes a sandwich immunoassay to determine hepcidin levels in a sample. [0357] Using Biacore analysis, a surface coated with antibody 1S1 was tested for the concurrent binding of hepcidin and another antibody (FIG. 16). Immobilization of anti-Hepc antibody 1S1 to the sensor chip surface was performed according to manufacturer's instructions using a continuous flow of 0.005% P-20/PBS buffer. Briefly, carboxyl groups on the sensor chip surfaces were activated by injecting 60 μL of a mixture containing 0.2 M N-ethyl-N'-(dimethylaminopropyl)carbodiimide (EDC) and 0.05 M N-hydroxysuccinimide (NHS). This was followed by injecting 1S1 diluted in 10 mM acetate, pH 4.0 at concentrations between 20 µg/mL. Excess reactive groups on the surfaces were deactivated by injecting 60 μL of 1 M ethanolamine. Final immobilized levels were 5,000-6,000 resonance units (RU) for the Ab 1S1 surface. A blank, mock-coupled reference surface was also prepared on the sensor chip. 20 nM E. coli-derived human hepcidin was injected over and bound to the 1S1 antibody surface. Then 50 nM antibody 2.7, 23F11, 26F11, and 1S1 were injected over the hepcidin/1S1 surface. After the antibody injection, the surfaces were regenerated by injecting 10 mM HCl pH 2.0. [0358] There was a high selectivity of binding in the form

[0358] There was a high selectivity of binding in the form of complexes. The murine antibody 2.7, which was used in the competitive assay above, was not able to form a sandwich pair with 1S1, and 26F11 showed markedly lower ability to bind to hepcidin concurrently with 1S1 than did 23F11.

[0359] When 1S1 and 23F11 were assembled into a sandwich ELISA format, the sensitivity of the immunoassay for detecting hepcidin levels was improved by 50-fold. As shown in FIG. 17, the assay proved capable of measuring levels of hepcidin in normal sera after a 50-fold pre-dilution step. The axis represents the hepcidin levels pre-dilution.

Example 13

Competitive Binding Assay

[0360] The following Example describes a competitive binding assay to determine hepcidin levels. In one protocol,

unlabeled hepcidin present in serum competes with biotinylated hepcidin for binding to an anti-hepcidin antibody (e.g., Antibody 2.7).

[0361] Hepcidin levels were determined using hepcidin standards of varying concentrations (from 1.4-300 ng/ml) spiked into buffer (5% BSA:I-block), rabbit serum, or pooled human serum. Hepcidin was added to equal volumes of 40 ng/mL of Ab2.7 and incubated for 120 minutes. 25 μl/well of mixed solution was added to Black half area plates coated with 1-2 μg/mL G×M capture antibody. 25 μL/well of biotinylated hepcidin was added at 0.25 nM. The plate was covered with plate film sealer and incubated at room temperature (25° C.) on a plate shaker at around <200 RPM for around 60 minutes. The plate was washed and then 50 µL/well of Poly horseradish peroxidase amplification reagent at 1:2000 was added. The plate was allowed to sit for 30 minutes and was then washed with a plate washer using PBS or KPL buffer 6 times. The plate was patted dry and a luminescent substrate (Femto or Pico) was quickly added. The plate was read with luminometer (ex: Lmax 340) for 1 second using Femto or Pico Substrate. Results indicated that hepcidin was measurable at a concentration range of 1-100 ng/ml in both the rabbit serum and buffer. (FIG. 18).

[0362] Pooled human serum appeared to have an existing hepcidin level of greater than 20 ng/ml. It was determined that the levels of hepcidin varied substantially in human sera, over the range of 1-30 ng/ml for various randomly selected sera (FIG. 19).

[0363] Using hepcidin standards in rabbit serum determined above, 24 random sera from normal human subjects was tested. The hepcidin levels varied from undetectable to over 50 ng/ml. See FIG. 20. These values were at variance with the results from the levels of hepcidin measured through the mass spectrometry-based quantitation method described in co-pending co-owned U.S. patent application Ser. No. 11/880,313 and International Publication No. WO 2008/011158, the disclosures of which are incorporated herein by reference in their entirety, which generally gave much lower values

Example 14

Pharmacokinetic Study of Antibody Following Single Dose of Antibody-Hepcidin Complex

[0364] C57 BL/6 mice were pre-dosed with either the control antibody or antibodies 1S1 or 18B11 on Day 0 as a single intraperitoneal injection at a dose of 1 mg/mouse to ensure that the antibody concentration was above the antibody K_D . On Day 1, the mice were dosed with an antibody-hepcidin complex (i.e., either 1S1-hepcidin complex or 18B11-hepcidin complex). Urine samples for determination of hepcidin concentrations were collected prior to hepcidin administration and at 1 hour, 24 and 96 hours antibody-hepcidin complex administration. The results are set forth in Table 5 below.

TABLE 5

Time (hours)	1S1 Hepcidin Concentration	18B11 Hepcidin Concentration
1	Not detectable	20 ng/mL
24	Not detectable	Not detectable
96	Not detectable	Not detectable

[0365] Serum samples for determination of serum antibody and serum hepcidin concentrations were collected at 5 minutes, 1 hour, 24 hours, 96 hours, 168 hours, 264 hours and 336 hours after administration of the antibody-hepcidin complex. Serum antibody and hepcidin concentrations were calculated by ELISA and the results are set forth in FIGS. 21 and 22, respectively. Results indicated that the concentration of serum hepcidin at the 5-minute timepoint in mice that received the 18B11-hepcidin complex was lower compared to the 1S1-hepcidin complex. Interestingly, hepcidin was not detectable after 24 hours in mice that received the 18B11-hepcidin complex, while mice treated with the 1S1-hepcidin complex still had detectable levels of serum hepcidin at 168 hours.

Example 15

Pharmacokinetic Study of Antibodies Following Single Dose of Free Hepcidin to Mice

[0366] C57 BL/6 mice were pre-dosed with either the control antibody or antibodies 1S1 or 18B11 on Day 0 as a single intraperitoneal injection at a dose of 1 mg/mouse. On Day 1, the mice were predosed with the antibodies as a single intravenous injection at a dose of 1 mg/mouse. On Day 4, human hepcidin (3.72 $\mu g/mouse)$ was administered to the mice by intravenous injection. Urine samples for determination of hepcidin concentrations were collected prior to hepcidin administration and at 1 hour, 6 hours and 24 hours post-hepcidin administration. Results indicated that hepcidin was not detected in mice pre-dosed with either 1S1 or 18B11. See FIG. 23.

[0367] Serum samples for determination of antibody 1S1 or 18B11 and hepcidin concentrations were collected at 5 minutes, 1 hour, 24 hours, 96 hours, 168 hours, 264 hours and 336 hours after administration of the hepcidin. Serum antibody and hepcidin concentrations were calculated by ELISA and the results are set forth in FIGS. 24 and 25, respectively. Results indicated that antibody 18B11 cleared all detectable

serum hepcidin by 24 hours, while hepcidin levels stabilized in mice treated with antibody 1S1.

Example 16

Detection of Hepcidin Intracellular Accumulation by Antibodies Contacted with Cells Expressing FCRN

[0368] FcRn is the salvage receptor involved in recycling antibodies by rescuing them from endosomal degradation. This Example examined the effect of antibodies on relative levels of intracellular hepcidin compared to total hepcidin, providing an indication of the internalization and subsequent degradation of hepcidin by cells expressing FcRn. Alexa-647 labeled 1S1 or 18B11 antibodies were complexed with excess of biotinylated-hepcidin by incubation for 10 minutes at room temperature. Free hepcidin was removed using spin-columns. 293T/FcRn cells were incubated with the antibody-hepcidin complexes for 6 hours at 37° C., 5% CO₂ in 0% FBS medium. At the end of the incubation cells were harvested in cold FACs buffer (PBS 2% FBS). Cells from each group were either fixed only (detection of extracellular hepcidin) or fixed and permeabilized (detection of total hepcidin) using R&D's CytoFix and CytoPerm reagents. All samples were stained with SA-PE and read on FACS. Results indicated that antibody 18B11 caused greater intracellular accumulation of hepcidin compared to antibody 1S1. See FIG. 26. Of the total hepcidin detected in association with cells contacted with 1S1, all of the hepcidin was extracellular. Of the total hepcidin detected in association with cells contacted with 181311, only about one-third of the hepcidin was extracellular and the remainder was intracellular.

[0369] For the sake of completeness of disclosure, all patent documents and literature articles cited herein are expressly incorporated in this specification by reference in their entireties.

[0370] The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the described embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed broadly to include all variations within the scope of the appended claims and equivalents thereof.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 416
<210> SEQ ID NO 1
<211> LENGTH: 249
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 1
atggcactca gcactcggac ccaggctgcc tgtctcctgc ttctcctcct tgccagcctg
                                                                        60
agcagcacca cctatctcca tcaacagatg agacagacta cagagctgca gcctttgcac
                                                                      120
qqqqaaqaaa qcaqqqcaqa cattqcqata ccaatqcaqa aqaqaaqqaa qaqaqacacc
                                                                      180
aacttcccca tctgcatctt ctgctgtaaa tgctgtaaca attcccagtg tggtatctgt
                                                                       240
                                                                      249
tacaaaaca
```

-continued

```
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 2
Met Ala Leu Ser Thr Arg Thr Gln Ala Ala Cys Leu Leu Leu Leu
Leu Ala Ser Leu Ser Ser Thr Thr Tyr Leu His Gln Gln Met Arg Gln
Thr Thr Glu Leu Gln Pro Leu His Gly Glu Glu Ser Arg Ala Asp Ile
Ala Ile Pro Met Gln Lys Arg Arg Lys Arg Asp Thr Asn Phe Pro Ile
                       55
Cys Ile Phe Cys Cys Lys Cys Cys Asn Asn Ser Gln Cys Gly Ile Cys
Cys Lys Thr
<210> SEQ ID NO 3
<211> LENGTH: 252
<212> TYPE: DNA
<213 > ORGANISM: Rattus norvegicus
<400> SEQUENCE: 3
atggcactaa gcactcggat ccaggctgcc tgtctcctgc ttctcctcct ggccagcctg
agcagcgqtq cctatctccq qcaacaqacq agacagacta cqqctctqca qccttqqcat
ggggcagaaa gcaagactga tgacagtgcg ctgctgatgc tgaagcgaag gaagcgagac
accaacttcc ccatatgcct cttctgctgt aaatgctgta agaattcctc ctgtggtctc
                                                                     240
                                                                     252
tgttgcataa ca
<210> SEQ ID NO 4
<211> LENGTH: 84
<212> TYPE: PRT
<213 > ORGANISM: Rattus norvegicus
<400> SEQUENCE: 4
Met Ala Leu Ser Thr Arg Ile Gln Ala Ala Cys Leu Leu Leu Leu
Leu Ala Ser Leu Ser Ser Gly Ala Tyr Leu Arg Gln Gln Thr Arg Gln
                                25
Thr Thr Ala Leu Gln Pro Trp His Gly Ala Glu Ser Lys Thr Asp Asp
                          40
Ser Ala Leu Leu Met Leu Lys Arg Arg Lys Arg Asp Thr Asn Phe Pro
Ile Cys Leu Phe Cys Cys Lys Cys Cys Lys Asn Ser Ser Cys Gly Leu
Cys Cys Ile Thr
<210> SEQ ID NO 5
<211> LENGTH: 78
<212> TYPE: DNA
<213 > ORGANISM: Macaca fascicularis
<400> SEQUENCE: 5
gacacccact tececatety cattitetye tyeggetyet gteategate aaagtytygg
                                                                      60
                                                                      78
atgtgctgca ggacgtag
```

```
<210> SEQ ID NO 6
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Macaca fascicularis
<400> SEQUENCE: 6
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
                  10
Ser Lys Cys Gly Met Cys Cys Arg Thr
           20
<210> SEQ ID NO 7
<211> LENGTH: 252
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 7
atggcactga geteccagat etgggeeget tgeeteetge teeteeteet eetegeeage
ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct gcaaccccag
gacagagetg gagecaggge cagetggatg eccatgttee agaggegaag gaggegagae
acceaettee ceatetgeat tttetgetge ggetgetgte ategateaaa gtgtgggatg
tgctgcaaga cg
<210> SEQ ID NO 8
<211> LENGTH: 84
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 8
Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu Leu
                                  10
Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln Thr Gly
Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala Arg Ala Ser
                           40
Trp Met Pro Met Phe Gln Arg Arg Arg Arg Arg Thr His Phe Pro
Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg Ser Lys Cys Gly Met
Cys Cys Lys Thr
<210> SEQ ID NO 9
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 9
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
Ser Lys Cys Gly Met Cys Cys Lys Thr
<210> SEQ ID NO 10
<400> SEQUENCE: 10
```

000 <210> SEQ ID NO 11 <400> SEOUENCE: 11 000 <210> SEQ ID NO 12 <211> LENGTH: 330 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 12 aacatcgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 60 atatcctgca gagccagtga aagtgttgat agttatggca atagttttat gcactggtac cagcagaaac caggacagcc acccaaactc ctcatctatc ttgcatccaa cctagaatct ggggtccctg ccaggttcag tggcagtggg tctaggacag acttcaccct caccattgat cctgtggagg ctgatgatgc tgcaacctat tactgtcagc aaaataatga ggatcggacg ttcggtggag gcaccaagct ggaaatcaaa <210> SEQ ID NO 13 <211> LENGTH: 110 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 13 Asn Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 10 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Tyr Gly Asn Ser Phe Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asp Pro Val Glu Ala Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Asn Asn Glu Asp Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 105 <210> SEQ ID NO 14 <211> LENGTH: 357 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 14 cagatccagt tggtacagtc tggacctgag ctgaagaagc ctggagagac agtcaagatc tcctgcaagg cttctgggta taccttcaca acctatggaa tgagctgggt gaaacaggct ccaggaaagg gtttaaagtg gatgggctgg ataaacacct actctggagt gccaacatat gctgatgact tcaagggacg gtttgccttc tctttggaaa cctctgccag cactgcctat ttqcaqatca acaacctcaa aaatqaqqac acqqctacat atttctqtqc aaqcttatqq

```
tactacggta gggcctttga ctactggggc caaggcacca ctctcacagt ctcctca
                                                                    357
<210> SEQ ID NO 15
<211> LENGTH: 119
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 15
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Tyr
                       25
Gly Met Ser Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
                       40
Gly Trp Ile Asn Thr Tyr Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe
Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr
Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
Ala Ser Leu Trp Tyr Tyr Gly Arg Ala Phe Asp Tyr Trp Gly Gln Gly
Thr Thr Leu Thr Val Ser Ser
      115
<210> SEQ ID NO 16
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 16
Arg Ala Ser Glu Ser Val Asp Ser Tyr Gly Asn Ser Phe Met His
    5
                                 10
<210> SEQ ID NO 17
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 17
Leu Ala Ser Asn Leu Glu Ser
1 5
<210> SEQ ID NO 18
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 18
Gln Gln Asn Asn Glu Asp Arg Thr
<210> SEQ ID NO 19
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 19
```

```
Thr Tyr Gly Met Ser
<210> SEQ ID NO 20
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 20
Trp Ile Asn Thr Tyr Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe Lys
Gly
<210> SEQ ID NO 21
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 21
Leu Trp Tyr Tyr Gly Arg Ala Phe Asp Tyr
<210> SEQ ID NO 22
<400> SEQUENCE: 22
<210> SEQ ID NO 23
<400> SEQUENCE: 23
000
<210> SEQ ID NO 24
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 24
gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc
                                                                       60
atatcctgca gagccagtga aagtgttgat agttatggca atagttttat gcactggtac
                                                                      120
cagcagaaac caggacagcc acccaaactc ctcatctatc gtgcatccaa cctagaatct
                                                                      180
gggatccctg ccaggttcag tggcagtggg tctaggacag acttcaccct caccattaat
                                                                      240
cctgtggagg ctgatgatgt tgcaacctat tactgtcacc aaagtaatga ggagtacacg
                                                                      300
ttcggagggg ggaccaagct ggaaataaaa
                                                                      330
<210> SEQ ID NO 25
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 25
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Tyr
Gly Asn Ser Phe Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro
```

35 40 Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asn Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys His Gln Ser Asn Glu Glu Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 <210> SEQ ID NO 26 <211> LENGTH: 354 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 26 cagatccagt tggtacagtc tggacctgag ctgaagaagc ctggagagac agtcaagatc tcctgcaagg cttctgggta taccttcaca acctatggaa tgagctgggt gaaacaggct ccaggaaagg gtttaaagtg gatgggctgg ataaatacct actctggagt gccaacatat gctgatgact tcaagggacg gtttgccttc tctttggaaa cctctgccag cactgcctat ttgcagatca acaacctcaa aaatgaggac acggctacat atttctgtgg aagagaccac tactacgggg aggttgctta ctggggccaa gggactctgg tcactgtctc tgca <210> SEQ ID NO 27 <211> LENGTH: 118 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 27 Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu 10 Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Tyr 25 Gly Met Ser Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly Trp Ile Asn Thr Tyr Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe 55 Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr 70 Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys Gly Arg Asp His Tyr Tyr Gly Glu Val Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 115 <210> SEQ ID NO 28 <211> LENGTH: 15 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens Arg Ala Ser Glu Ser Val Asp Ser Tyr Gly Asn Ser Phe Met His 10

```
<210> SEQ ID NO 29
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 29
Arg Ala Ser Asn Leu Glu Ser
1 5
<210> SEQ ID NO 30
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 30
His Gln Ser Asn Glu Glu Tyr Thr
                 5
<210> SEQ ID NO 31
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 31
Thr Tyr Gly Met Ser
<210> SEQ ID NO 32
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 32
Trp Ile Asn Thr Tyr Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe Lys 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Gly
<210> SEQ ID NO 33
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 33
Asp His Tyr Tyr Gly Glu Val Ala Tyr
<210> SEQ ID NO 34
<400> SEQUENCE: 34
000
<210> SEQ ID NO 35
<400> SEQUENCE: 35
000
<210> SEQ ID NO 36
<211> LENGTH: 330
<212> TYPE: DNA
```

```
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 36
gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc
                                                                       60
atatcctgca gagccagtga aagtgttgat agttttggca atagttttat gcactggtac
                                                                      120
cagetgaaac caggacagee acceaaacte eteatetate gtgeatecaa eetagaatet
                                                                      180
gggatccctg ccaggttcag tggcagtggg tctaggacag acttcaccct caccattaat
                                                                      240
cctgtggagg ctgatgatgt tgcaatttat tactgtcagc aaagtaatga ggagtacacg
                                                                      300
ttcggagggg ggaccaagct ggaaataaaa
                                                                      330
<210> SEQ ID NO 37
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 37
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Phe
Gly Asn Ser Phe Met His Trp Tyr Gln Leu Lys Pro Gly Gln Pro Pro
Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala
Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asn 65 70 75 75 80
Pro Val Glu Ala Asp Asp Val Ala Ile Tyr Tyr Cys Gln Gln Ser Asn
Glu Glu Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
<210> SEQ ID NO 38
<211> LENGTH: 354
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 38
cagatccagt tggtacagtc tggacctgag ctgaagaagc ctggagagac agtcaagatc
                                                                       60
tcctgcaagg cttctgggta taccttcaca acctatggaa tgagctgggt gaaacaggct
                                                                      120
ccaggaaagg gtttaaagtg gatgggctgg ataaacacct cctctggagt gccaacatat
                                                                      180
getgatgact teatgggacg gtttgcette tetttggaaa cetetgeeag caetgeetat
                                                                      240
ttgcagatca acaacctcaa aaatgaggac acggctacgt atttctgtgc aagagaccgc
                                                                      300
tactacgggg aggttgctta ctggggccaa gggactctgg tcaccgtctc tgca
                                                                      354
<210> SEQ ID NO 39
<211> LENGTH: 118
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 39
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
                                    10
```

```
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr
                              25
Gly Met Ser Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
                          40
Gly Trp Ile Asn Thr Ser Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe
                55
Met Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr
         70
Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
Ala Arg Asp Arg Tyr Tyr Gly Glu Val Ala Tyr Trp Gly Gln Gly Thr
                             105
Leu Val Thr Val Ser Ala
      115
<210> SEQ ID NO 40
<211> LENGTH: 15
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 40
Arg Ala Ser Glu Ser Val Asp Ser Phe Gly Asn Ser Phe Met His
<210> SEQ ID NO 41
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 41
Arg Ala Ser Asn Leu Glu Ser
     5
<210> SEQ ID NO 42
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 42
Gln Gln Ser Asn Glu Glu Tyr Thr
1 5
<210> SEQ ID NO 43
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 43
Thr Tyr Gly Met Ser
<210> SEQ ID NO 44
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 44
Trp Ile Asn Thr Ser Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe Met
                                   10
```

```
Gly
<210> SEQ ID NO 45
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 45
Asp Arg Tyr Tyr Gly Glu Val Ala Tyr
<210> SEQ ID NO 46
<400> SEQUENCE: 46
000
<210> SEQ ID NO 47
<400> SEQUENCE: 47
000
<210> SEQ ID NO 48
<211> LENGTH: 317
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 48
acatccagat gacccagtct ccttcactcc tgtcagcatc tgtgggagac agagtcactc
                                                                      60
                                                                      120
tcagctgcaa agcaagtcag aatatttaca agtacttaaa ctggtatcag caaaagcttg
qaqaaqctcc caaactcctq atatattata caaacaqttt qcaaacqqqc atcccatcaa
                                                                      180
ggttcagtgg cagtggatct ggtacagatt tcacacttac catcagcagc ctgcagcctg
                                                                      240
aagatgttgc cacatattac tgctatcagt ataacagtgg gcccacgttt ggagctggga
                                                                      300
ccaagctgga actgaaa
                                                                      317
<210> SEQ ID NO 49
<211> LENGTH: 106
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 49
Asp Ile Gln Met Thr Gln Ser Pro Ser Leu Leu Ser Ala Ser Val Gly
                                    10
Asp Arg Val Thr Leu Ser Cys Lys Ala Ser Gln Asn Ile Tyr Lys Tyr
Leu Asn Trp Tyr Gln Gln Lys Leu Gly Glu Ala Pro Lys Leu Leu Ile
Tyr Tyr Thr Asn Ser Leu Gln Thr Gly Ile Pro Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu Asp Val Ala Thr Tyr Tyr Cys Tyr Gln Tyr Asn Ser Gly Pro Thr
Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
```

```
<210> SEO ID NO 50
<211> LENGTH: 372
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 50
caggitactc tgaaagagic tggccctggg atattgcagc citcccagac ccicagictg
acttgctctt tctctgggtt ttcactgagc acttctggta tatgtgtgag ctggattcgt
                                                                         120
cagcetteag ggaagggtet ggagtggetg geaactattt gttgggagga tagtaaggge
                                                                         180
tacaaccett ctctgaagaa ccggctcaca atctccaagg acacctccaa caaccaagca
                                                                         240
ttcctcaaga tcaccagtgt ggacactgca gataccgcca tatactactg tgctcggccc
cttaactacg gagggtatag tgagctagaa ttggattact ggggccaagg agtcatggtc
acagteteet ca
                                                                         372
<210> SEQ ID NO 51
<211> LENGTH: 124
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 51
Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln
Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser Leu 20 25 30
Gly Ile Cys Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu _{\rm 35} _{\rm 40} _{\rm 45}
Trp Leu Ala Thr Ile Cys Trp Glu Asp Ser Lys Gly Tyr Asn Pro Ser
Leu Lys Asn Arg Leu Thr Ile Ser Lys Asp Thr Ser Asn Asn Gln Ala 65 70 75 75 80
Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Ile Tyr Tyr
Cys Ala Arg Pro Leu Asn Tyr Gly Gly Tyr Ser Glu Leu Glu Leu Asp
                                 105
Tyr Trp Gly Gln Gly Val Met Val Thr Val Ser Ser
        115
<210> SEQ ID NO 52 <211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 52
Lys Ala Ser Gln Asn Ile Tyr Lys Tyr Leu Asn
<210> SEQ ID NO 53
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 53
Tyr Thr Asn Ser Leu Gln Thr
```

```
<210> SEQ ID NO 54
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 54
Tyr Gln Tyr Asn Ser Gly Pro Thr
<210> SEQ ID NO 55
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 55
Thr Ser Gly Ile Cys Val Ser
<210> SEQ ID NO 56
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 56
Thr Ile Cys Trp Glu Asp Ser Lys Gly Tyr Asn Pro Ser Leu Lys Asn
<210> SEQ ID NO 57
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 57
Pro Leu Asn Tyr Gly Gly Tyr Ser Glu Leu Glu Leu Asp Tyr
<210> SEQ ID NO 58
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 58
uguaaaugcu guaacaauu
                                                                               19
<210> SEQ ID NO 59
<211> LENGTH: 19
<212> TYPE: RNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 59
gcuguaaaug cuguaacaa
                                                                               19
<210> SEQ ID NO 60
<211> LENGTH: 19
<212> TYPE: RNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 60
gugugguauc uguugcaaa
                                                                               19
<210> SEQ ID NO 61
```

<211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 61		
gcagacauug cgauaccaa		19
<210> SEQ ID NO 62 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 62		
auaccaaugc agaagagaa		19
<210> SEQ ID NO 63 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 63		
cuacagagcu gcagccuuu		19
<210> SEQ ID NO 64 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 64		
gaagagagac accaacuuc		19
<210 > SEQ ID NO 65 <211 > LENGTH: 19 <212 > TYPE: RNA <213 > ORGANISM: Homo	sapiens	
<400> SEQUENCE: 65		
acuuccccau cugcaucuu		19
<210 > SEQ ID NO 66 <211 > LENGTH: 19 <212 > TYPE: RNA <213 > ORGANISM: Homo	sapiens	
<400> SEQUENCE: 66		
cugagcagca ccaccuauc		19
<210> SEQ ID NO 67 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 67		
acagaugaga cagacuaca		19
<210> SEQ ID NO 68 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Homo	sapiens	
<400> SEQUENCE: 68		

aaugcagaa gagaaggaa		19
210> SEQ ID NO 69 211> LENGTH: 19 212> TYPE: RNA 213> ORGANISM: Homo sapiens		
400> SEQUENCE: 69		
auucccagu gugguaucu		19
210> SEQ ID NO 70		
400> SEQUENCE: 70		
000		
210> SEQ ID NO 71		
400> SEQUENCE: 71		
000		
210> SEQ ID NO 72 211> LENGTH: 193 212> TYPE: PRT 213> ORGANISM: Homo sapiens		
400> SEQUENCE: 72		
let Gly Val His Glu Cys Pro 1 5	Ala Trp Leu Trp Leu L 10	eu Leu Ser Leu 15
eu Ser Leu Pro Leu Gly Leu I 20	Pro Val Leu Gly Ala P: 25	Pro Pro Arg Leu 30
le Cys Asp Ser Arg Val Leu (35	Glu Arg Tyr Leu Leu G 40 49	
la Glu Asn Ile Thr Thr Gly (Cys Ala Glu His Cys S 60	er Leu Asn Glu
sn Ile Thr Val Pro Asp Thr I 5 70	Lys Val Asn Phe Tyr A 75	ala Trp Lys Arg 80
et Glu Val Gly Gln Gln Ala V	Val Glu Val Trp Gln G	ily Leu Ala Leu
85 eu Ser Glu Ala Val Leu Arg (
100 ln Pro Trp Glu Pro Leu Gln I	105 Leu His Val Asp Lys A	110
115	120 1:	.25
eu Arg Ser Leu Thr Thr Leu I 130 135	140	ita Gin nys Giu
la Ile Ser Pro Pro Asp Ala A 45 150	Ala Ser Ala Ala Pro Lo 155	eu Arg Thr Ile 160
hr Ala Asp Thr Phe Arg Lys I 165	Leu Phe Arg Val Tyr S 170	er Asn Phe Leu 175
rg Gly Lys Leu Lys Leu Tyr 1	Thr Gly Glu Ala Cys A 185	arg Thr Gly Asp
rg		
210> SEQ ID NO 73 211> LENGTH: 193 212> TYPE: PRT		

```
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 73
Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu
                                  10
Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
                40
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
                              105
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
        165 170
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
          180
                             185
Arg
<210> SEQ ID NO 74
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 74
Xaa Ala Ser Asn Leu Glu Ser
1 5
<210> SEQ ID NO 75
<211> LENGTH: 6
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 75
Xaa Gln Ser Asn Glu Glu
<210> SEQ ID NO 76
<211> LENGTH: 6
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (6) .. (6)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 76
Gln Gln Xaa Asn Glu Xaa
<210> SEQ ID NO 77
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
Trp Ile Asn Thr Xaa Ser Gly Val Pro Thr Tyr Ala Asp Asp Phe Xaa
Gly
<210> SEQ ID NO 78
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(2)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (6)..(7)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 78
Xaa Xaa Tyr Tyr Gly Xaa Xaa Ala Xaa Tyr
               5
<210> SEQ ID NO 79
<211> LENGTH: 75
<212> TYPE: DNA
<213 > ORGANISM: Mus musculus
<400> SEQUENCE: 79
gacaccaact tececatetg catettetge tgtaaatget gtaacaatte ceagtgtggt
atctgttgca aaaca
<210> SEQ ID NO 80
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Mus musculus
```

```
<400> SEOUENCE: 80
 \hbox{Asp Thr Asn Phe Pro Ile Cys Ile Phe Cys Cys Lys Cys Cys Asn Asn } \\
                                    1.0
Ser Gln Cys Gly Ile Cys Cys Lys Thr
            20
<210> SEQ ID NO 81
<211> LENGTH: 75
<212> TYPE: DNA
<213> ORGANISM: Rattus norvegicus
<400> SEQUENCE: 81
gacaccaact tccccatatg cctcttctgc tgtaaatgct gtaagaattc ctcctgtggt
ctctgttgca taaca
                                                                         75
<210> SEQ ID NO 82
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Rattus norvegicus
<400> SEQUENCE: 82
Asp Thr Asn Phe Pro Ile Cys Leu Phe Cys Cys Lys Cys Lys Asn
Ser Ser Cys Gly Leu Cys Cys Ile Thr
            20
<210> SEQ ID NO 83
<211> LENGTH: 78
<212> TYPE: DNA
<213 > ORGANISM: Cercopithecus aethiops
<400> SEQUENCE: 83
gacacccact tececatety cattitetye tyeggetyet gteategate aaagtgtggg
                                                                         60
atgtgctgca ggacgtag
                                                                         78
<210> SEQ ID NO 84
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Cercopithecus aethiops
<400> SEQUENCE: 84
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
Ser Lys Cys Gly Met Cys Cys Arg Thr
<210> SEQ ID NO 85
<211> LENGTH: 75
<212> TYPE: DNA
<213 > ORGANISM: Oryctolagus cuniculus
<400> SEQUENCE: 85
gacacccact tccccatctg catcttctgc tgcagctgct gtaggaattc aaaatgtggg
                                                                         60
                                                                         75
atctgctgca agacc
<210> SEQ ID NO 86
<211> LENGTH: 25
```

```
<212> TYPE: PRT
<213 > ORGANISM: Oryctolagus cuniculus
<400> SEQUENCE: 86
 \hbox{Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Ser Cys Cys Arg Asn } \\
Ser Lys Cys Gly Ile Cys Cys Lys Thr
           20
<210> SEQ ID NO 87
<211> LENGTH: 75
<212> TYPE: DNA
<213> ORGANISM: Canis familiaris
<400> SEOUENCE: 87
gacacccact tccccatctg catattctgc tgtggctgct gtaaaacacc gaagtgtggg
                                                                       60
ctctgctgca taaca
                                                                       75
<210> SEQ ID NO 88
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Canis familiaris
<400> SEQUENCE: 88
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys Lys Thr
Pro Lys Cys Gly Leu Cys Cys Ile Thr
           20
<210> SEQ ID NO 89
<211> LENGTH: 75
<212> TYPE: DNA
<213 > ORGANISM: Canis familiaris
<400> SEOUENCE: 89
gacacccact tececatety catattetye tytggetyet gtaaaacace gaagtytygg
                                                                       60
                                                                       75
ttctgctgca ggacg
<210> SEQ ID NO 90
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Canis familiaris
<400> SEQUENCE: 90
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys Lys Thr
Pro Lys Cys Gly Phe Cys Cys Arg Thr
<210> SEQ ID NO 91
<211> LENGTH: 75
<212> TYPE: DNA
<213 > ORGANISM: Canis familiaris
<400> SEQUENCE: 91
gacacccact tececatety catattetye tytygetyet gtaaaacace gaagtytygg
ttgtgctgca agacg
```

```
<210> SEQ ID NO 92
<211> LENGTH: 25
<212> TYPE: PRT
<213 > ORGANISM: Canis familiaris
<400> SEQUENCE: 92
Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys Lys Thr
                                   10
Pro Lys Cys Gly Leu Cys Cys Lys Thr
           20
<210> SEQ ID NO 93
<211> LENGTH: 180
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 93
tctgttttcc cacaacagac gggacaactt gcagagctgc aaccccagga cagagctgga
gccagggcca gctggatgcc catgttccag aggcgaagga ggcgagacac ccacttcccc
atotgoattt totgotgogg otgotgtoat ogatoaaagt gtgggatgtg otgoaagaog
<210> SEQ ID NO 94
<211> LENGTH: 60
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 94
Ser Val Phe Pro Gln Gln Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln
Asp Arg Ala Gly Ala Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg
                                25
Arg Arg Arg Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys
                           40
Cys His Arg Ser Lys Cys Gly Met Cys Cys Lys Thr
   50
<210> SEQ ID NO 95
<211> LENGTH: 60
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 95
atctgcattt tctgctgcgg ctgctgtcat cgatcaaagt gtgggatgtg ctgcaagacg
                                                                       60
<210> SEQ ID NO 96
<211> LENGTH: 20
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 96
Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg Ser Lys Cys Gly Met
Cys Cys Lys Thr
<210> SEQ ID NO 97
<211> LENGTH: 66
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
```

<400> SEQUENCE: 97	
ttccccatct gcattttctg ctgcggctgc tgtcatcgat caaagtgtgg gatgtgctgc	60
aagacg	66
<210> SEQ ID NO 98 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 98	
Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg Ser Lys Cys 1 5 10 15	
Gly Met Cys Cys Lys Thr 20	
<210> SEQ ID NO 99 <211> LENGTH: 1650 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 99	
agteettaga etgeacagea gaacagaagg catgatggea eteageacte ggaceeagge	60
tgcctgtctc ctgcttctcc tccttgccag cctgagcagc accacctatc tccatcaaca	120
ggtgagcacc ccaggcccat tgtggtggga gagccaggtc ccaggcaggc aggagctgct	180
caccactgag tagttagaat ggctcaggag tgatggcagc tgctgacaag gaagagggtg	240
gteettagtg ggagetggga agetgeaeag gtgteettga atagetaete tgttgteeta	300
ctgtggaaaa tgaagcatgg tgggagccaa acaaaagtgt tccttggctg tcccaccccg	360
tcagggcatt ctttaagcag cctttacatg agtattttat aaagaattac tgtggatagt	420
acaaaagaca atgggcagaa aaactctaat gaggaaggac cagaggtggg gctaagaggc	480
tgacagccag gcaaagtatt ctatgagaaa atgatacaga agtcgggcag tggtggcaca	540
tgcctttaat cccagcattt gggaggcaga ggcaggtgga tttctgagtt tgaatccagc	660
ctggtctaca aagtgagttt caagacagcc agggctacac agagaaatcc tgtctgaaaa	720
aaaaaaaaaa acaaaaaaag aaaaaaaaa tgatacagaa gggtctggag agatggctta gctgttagga acatttgatg cttgtgcata ggacctagag tcagttccca gcacccatgt	780
ggtggateac aaccateetg aactetaett ceagggtace tgatgeette tgeectagat	840
ggcagtcagc agtaagcatg catatgatac acataggcac tcaaggcaat cacaagaccc	900
ttggggactg tagggtctga taagtgaagc cagtgttggc aataaagggc tgtagaggtt	960
ctgctgtgcc gagctttgtg gacagctgtg cagatgatga tctgtcctgg aaagccacaa	1020
tocagatgaa tgtgctataa gcctttgtgc tatggggtga cctggttata agagataaga	1080
tgcagggaaa actgtccgga gtgtgcaaaa gcaaagaaag tgggtgcttt taggagcatc	1140
caaggaatgg tgaggggaca cagggcagta ggagccette tagaaattet gtetaagcae	1200
agtccctaaa tctctgggga gaagctggca gagaaaagtc aggaagctat gccgggtact	1260
ccacaagatt caatacctct tctgctttca cagatgagac agactacaga gctgcagcct	1320
ttgcacgggg aagaaagcag ggcagacatt gcggtaagag catctgggac tccctccctg	1380
atccccagcc tctcccatgc ccaagctagg ctgcttacct ctctttcttt acacagatac	1440

caatgcagaa	gagaaggaag	agagacacca	acttccccat	ctgcatcttc	tgctgtaaat	1500
gctgtaacaa	ttcccagtgt	ggtatctgtt	gcaaaacata	gcctagagcc	acatcctgac	1560
ctctctacac	ccctgcagcc	cctcaacccc	attatttatt	cctgccctcc	ccaccaatga	1620
ccttgaaata	aagacgattt	tattttcaaa				1650
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAL	TH: 2637	sapiens				
<400> SEQUI	ENCE: 100					
gactgtcact	cggtcccaga	caccagagca	agctcaagac	ccagcagtgg	gacagccaga	60
cagacggcac	gatggcactg	agctcccaga	tctgggccgc	ttgcctcctg	ctcctcctcc	120
tectegecag	cctgaccagt	ggetetgttt	tcccacaaca	ggtgagagcc	cagtggcctg	180
ggtccttagc	agggcagcag	ggatgggaga	gccaggcctc	agcctagggc	actggagaca	240
cccgagcact	gagcagagct	caggacgtct	caggagtact	ggcagctgaa	caggaaccag	300
gacaggcacg	gtggctcatg	cctgtaatcc	cagcactttg	ggaggttgag	gcaggcagcc	360
cacttgaggt	cagtttgaga	ccagcctggc	caacatggta	aaaccccgtc	tctactaaaa	420
atacaaaagt	tagccaggct	tggtggcagg	tgcctgtaat	cccagctact	cgggagactg	480
aggcaggaga	attgcttgaa	cccgcaaggt	ggaggttgca	cagtgagctg	agattgcacc	540
actgcactcc	agcctggcaa	cagagcaaga	ctccatctcc	aaaaaagaac	agaaatcaat	600
gaagcaccga	gtgacaggga	ctggaaggtc	ctaattccat	gggtatttac	ggaaccccta	660
cgccgtgtgg	agtcttattc	tagacagtgg	ggacgaggcc	atgaacaagg	tagatgagag	720
aggagatttc	tccatcctgg	tcagggaatt	tgttaaagac	tgatgaaaac	atgaataaat	780
aattgtgtct	agtacattct	attcgtgaat	ctcataacag	acagtggtag	agtgaccgtg	840
acccattcgc	cacacagtag	agtcactttt	ttggtttgtt	ttttagagac	agggtcttcc	900
tetgttgetg	aggctggagt	gcagtggtgc	agtcatagtt	cactgcagcc	tcaacctcct	960
gtgctcaagc	aatcctccca	cctcagcgtc	ccaagtagct	gggacagcag	gcacatgcca	1020
cgggttgggg	gaccacaggc	atggtcaagg	ggctggcagt	caagcaagtg	tttcatgaga	1080
aagtgacagt	tgaccttcgt	cttggagggt	gagagatgga	ggcagcaaag	acctaaggag	1140
aggacaagcc	agcatagccc	agggtcaggc	tgaacaagag	gagatggtgg	gacttgggga	1200
taaggetgag	gggtgggcag	tccctaagtc	ttgtgggcaa	ccatgcagac	actgattttt	1260
ccttggaata	aagaggaagc	ccccataagc	tttttttt	ttttctgaga	tagggtctcg	1320
ctctgtcgtt	caggetggtg	tgcagtggca	tcatctgggc	tcactgcaac	ctccgcctcc	1380
cgggttcaag	caattctcct	gcctcagctt	cccgagcagc	tgggattaca	ggcggctgcc	1440
accacgcccg	gctaattttt	gtttttttag	tagagacagg	gtttcaccat	gttggccaga	1500
ctggtcttga	actcctgacc	tcaggtgatt	ctcccacctc	ggcttcccaa	agtgctggga	1560
ttacaggcgt	gagccactgc	gcccagcctc	ctgtaggttt	ttaaaatgga	gaaaaccaca	1620
atctcactgg	ccatgtttta	aaaaacttaa	tctgccagtc	aggcaccatg	gctcacacct	1680
gtaatcccag	agttttggga	ggccaaggta	ggaagatcag	ttgagcccag	gagttcaaga	1740
ccagcttggg	caacacaacc	agaccccacc	tctacaaaaa	attaaaaaat	tagccgggtg	1800

tggtggcgtg cacctgctgt cccagctact cgggaagctg aggcgggagc atcgcttgag	1860
cacaggaggt caaggetgca gggagetatg actgtgccac tgcactctgg cctgggcaac	1920
agaggaagac tctgtctaaa aaacaaacaa aaaaagtgac tctgctgtgt ggcaaatgga	1980
ttgaggggca agaatgcagg gaggtgtgtt aggaggctgg cactggcatc caggcagggg	2040
aaggtgatat cccaaagaag agtagcagct gtggaaagag gaggaggcgg atctgggagg	2100
ttttttttt taggaaaagc cgcccatggg aaggtgagca gaagcaagaa agcaaggccc	2160
ctcctaagag tccatttgag ctctgggttt aaaccacttg gagaggagca ggttgccggg	2220
agccagtete agaggteeae tgggeeeeet gecateetet geaceeeett etgettteae	2280
agacgggaca acttgcagag ctgcaacccc aggacagagc tggagccagg gccagctgga	2340
tggtgagege aacagtgatg cettteetag ecceetgete ecteeceatg etaaggeegg	2400
ttccctgctc acattccctt ccttcccaca gcccatgttc cagaggcgaa ggaggcgaga	2460
cacccacttc cccatctgca ttttctgctg cggctgctgt catcgatcaa agtgtgggat	2520
gtgctgcaag acgtagaacc tacctgccct gcccccgtcc cctcccttcc ttatttattc	2580
ctgctgcccc agaacatagg tcttggaata aaatggctgg ttcttttgtt ttccaaa	2637
<210> SEQ ID NO 101 <211> LENGTH: 180 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 101	
tetgttttee cacaacagae gggacaactt geagagetge aacceeagga eagagetgga	60
gccagggcca gctggatgcc catgttccag aggcgaagga ggcgagacac ccacttcccc	120
atotgoattt totgotgogg otgotgtoat ogatoaaagt gtgggatgtg otgoaagaog	180
<210> SEQ ID NO 102 <211> LENGTH: 61 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 102	
Gly Ser Val Phe Pro Gln Gln Thr Gly Gln Leu Ala Glu Leu Gln Pro 1 5 10 15	
Gln Asp Arg Ala Gly Ala Arg Ala Ser Trp Met Pro Met Phe Gln Arg 20 25 30	
Arg Arg Arg Arg Asp Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly 35 40 45	
Cys Cys His Arg Ser Lys Cys Gly Met Cys Cys Lys Thr 50 55 60	
<210> SEQ ID NO 103 <211> LENGTH: 301 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 103	
teggeceege eteetgeeac egeagattgg eegetageee teecegageg eeetgeetee	60
gagggccggc gcaccataaa agaagccgcc ctagccacgt cccctcgcag ttcggcggtc	120
ccgcgggtct gtctcttgct tcaacagtgt ttggacggaa cagatccggg gactctcttc	180

cagecteega eegeeeteeg attteetete egettgeaae eteegggaee atettetegg	240
ccatctcctg cttctgggac ctgccagcac cgtttttgtg gttagctcct tcttgccaac	300
С	301
<210> SEQ ID NO 104 <211> LENGTH: 75 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 104	
gacacccact tececatetg cattitetge tgeggetget gteategate aaagtgtggg	60
atgtgctgca agacg	75
<210> SEQ ID NO 105 <211> LENGTH: 66 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 105	
ggggacaagt ttgtacaaaa aagcaggctt agatctgaat tcaatttacg cgtgggatcc	60
aaggtc	66
<210> SEQ ID NO 106	
<400> SEQUENCE: 106	
000	
<210> SEQ ID NO 107 <211> LENGTH: 336 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 107	
gatattgtga tgacccagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc	60
ateteetgea ggtetagtea gageeteetg catagtgatg gatacaacta tttggattgg	120
tacetgeaga agteagggea gtetecaeag egeetgatet atatgggtte taategggee	180
tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc	240
agcagagtgg aggctgagga tgttggggtt tattactgca tgcaagctct acaaactccg	300
ctcactatcg gcggagggac caaggtggag atcaaa	336
<210> SEQ ID NO 108 <211> LENGTH: 112 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 108	
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 10 15	
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser	
Asp Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Ser Gly Gln Ser	

Pro Gln Arg Leu Ile Tyr Met Gly Ser Asn Arg Ala Ser Gly Val Pro

50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 90 Leu Gln Thr Pro Leu Thr Ile Gly Gly Gly Thr Lys Val Glu Ile Lys 100 <210> SEQ ID NO 109 <211> LENGTH: 366 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 109 caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc tcctgtgcag cctctggatt caccttcagt agttatggca tgcactgggt ccgtcaggct ccaggcaagg ggctggagtg ggtggcagtt atttcatatg atggaagtaa tgaatactat gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat ctgcaaatga acagcctgag agctgaggac acggctgtat attactgtgt gagagatgtg tggttcgggg agtccctcca cggtttggac gtctggggcc aagggaccac ggtcaccgtc tcctca 366 <210> SEQ ID NO 110 <211> LENGTH: 122 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 110 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Glu Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 70 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Asp Val Trp Phe Gly Glu Ser Leu His Gly Leu Asp Val Trp 105 Gly Gln Gly Thr Thr Val Thr Val Ser Ser <210> SEQ ID NO 111 <211> LENGTH: 16 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 111 Arg Ser Ser Gln Ser Leu Leu His Ser Asp Gly Tyr Asn Tyr Leu Asp 10

```
<210> SEO ID NO 112
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 112
Met Gly Ser Asn Arg Ala Ser
<210> SEQ ID NO 113
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 113
Met Gln Ala Leu Gln Thr Pro Leu Thr
<210> SEQ ID NO 114
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 114
Ser Tyr Gly Met His
<210> SEQ ID NO 115
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 115
Val Ile Ser Tyr Asp Gly Ser Asn Glu Tyr Tyr Ala Asp Ser Val Lys
                                    10
Gly
<210> SEQ ID NO 116
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 116
Asp Val Trp Phe Gly Glu Ser Leu His Gly Leu Asp Val
             5
<210> SEQ ID NO 117
<211> LENGTH: 333
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 117
cagtetgtgt tgacgcagee geeeteactg tetggggeee cagggeagag ggteaceate
tectgeactg ggggeagete caacateggg teaggttttg etatatactg gtaceageag
cttccaggaa cagcccccaa actcctcatc tttggtgaca acattcggcc ctcaggggtc
cctgaccgat tctctggctc caagtctggc acctccgcct ccctggccat cactgggctc
caggetgagg atgaggetga ttattactge cagteetatg acageageet gagtggtteg
gttttcggcg gagggaccaa gctgaccgtc cta
                                                                        333
```

```
<210> SEQ ID NO 118
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 118
Gln Ser Val Leu Thr Gln Pro Pro Ser Leu Ser Gly Ala Pro Gly Gln
                     10 15
Arg Val Thr Ile Ser Cys Thr Gly Gly Ser Ser Asn Ile Gly Ser Gly
                               25
Phe Ala Ile Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu
Leu Ile Phe Gly Asp Asn Ile Arg Pro Ser Gly Val Pro Asp Arg Phe
Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser
Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
<210> SEQ ID NO 119
<211> LENGTH: 351
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 119
caggttcagc tggtgcagtc tggagctgag gtgaagaagc ctggggcctc agtgaaggtc
                                                                     60
teetgeaagg ettetggtta cacetttaec agetatggta teagetgggt gegacaggee
                                                                    120
cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatggtga aaaaaacact
                                                                    180
gcacagaaac tccagggcag agtcaccatg accacagaca catccacgag cacagcctac
                                                                    240
atggagctga ggagcctgag atctgacgac acggccgtgt attactgtgc gagagaggaa
                                                                    300
                                                                    351
ctaggggctt ttgatatctg gggccaaggg acaatggtca ccgtctcttc a
<210> SEQ ID NO 120
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 120
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
Gly Trp Ile Ser Ala Tyr Asn Gly Glu Lys Asn Thr Ala Gln Lys Leu
Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
```

```
Ala Arg Glu Glu Leu Gly Ala Phe Asp Ile Trp Gly Gln Gly Thr Met
            100
                                  105
Val Thr Val Ser Ser
       115
<210> SEQ ID NO 121
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 121
Thr Gly Gly Ser Ser Asn Ile Gly Ser Gly Phe Ala Ile Tyr
1 5
                                       10
<210> SEQ ID NO 122
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 122
Gly Asp Asn Ile Arg Pro Ser
<210> SEQ ID NO 123
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 123
Gln Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10
<210> SEQ ID NO 124
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 124
Ser Tyr Gly Ile Ser
<210> SEQ ID NO 125
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 125
Trp Ile Ser Ala Tyr Asn Gly Glu Lys Asn Thr Ala Gln Lys Leu Gln
Gly
<210> SEQ ID NO 126
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 126
Glu Glu Leu Gly Ala Phe Asp Ile
<210> SEQ ID NO 127
```

```
<211> LENGTH: 321
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 127
gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc
                                                                       60
ctctcctgca gggccagtca gagtgttagc agcaactact tagcctggta ccagcagaaa
                                                                     120
cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac tggcatccca
                                                                     180
gacaggttca gtggcagtgg gtctgggaca gacttcactc tcatcatcag cagactggag
                                                                     240
cctgaagatt ttgtagtgta ttactgtcag cagtatggta gctcactcac tttcggcgga
                                                                     300
gggaccaagg tggagatcaa a
                                                                     321
<210> SEQ ID NO 128
<211> LENGTH: 107
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 128
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Asn
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ile Ile Ser Arg Leu Glu
Pro Glu Asp Phe Val Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Leu
Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
           100
<210> SEQ ID NO 129
<211> LENGTH: 366
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 129
caggttcagc tggtgcagtc tggagatgag gtgaagaagc ctgggggcctc agtgaaggtc
                                                                       60
tcctgcaagg cttctggtta cacctttatc aagtatggaa tcagttgggt gcgacaggcc
                                                                     120
cctggacaag ggcttgagtg gatgggatgg atcggcgctt tcaatggtaa cacagactat
gcacggaacc tccaggccag agtcaccatg accacagaca catccacgag cacagcctac
                                                                      240
atggagctga ggagcctgag atctgacgac acggccgtat attactgtgc gagagagggc
tggaacgacg actacttctg cggtttggac gtctggggcc aagggaccac ggtcaccgtc
tcctca
                                                                      366
<210> SEQ ID NO 130
<211> LENGTH: 122
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 130
```

```
Gln Val Gln Leu Val Gln Ser Gly Asp Glu Val Lys Lys Pro Gly Ala
                                  10
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ile Lys Tyr
Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                            40
Gly Trp Ile Gly Ala Phe Asn Gly Asn Thr Asp Tyr Ala Arg Asn Leu
Gln Ala Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Glu Gly Trp Asn Asp Asp Tyr Phe Cys Gly Leu Asp Val Trp $100$
Gly Gln Gly Thr Thr Val Thr Val Ser Ser
     115
<210> SEQ ID NO 131
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 131
Arg Ala Ser Gln Ser Val Ser Ser Asn Tyr Leu Ala
      5
<210> SEQ ID NO 132
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 132
Gly Ala Ser Ser Arg Ala Thr
<210> SEQ ID NO 133
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 133
Gln Gln Tyr Gly Ser Ser Leu Thr
<210> SEQ ID NO 134
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 134
Lys Tyr Gly Ile Ser
<210> SEQ ID NO 135
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 135
```

```
 \hbox{Trp Ile Gly Ala Phe Asn Gly Asn Thr Asp Tyr Ala Arg Asn Leu Gln } \\
                                 10
Ala
<210> SEQ ID NO 136
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 136
Glu Gly Trp Asn Asp Asp Tyr Phe Cys Gly Leu Asp Val
   5
                                  10
<210> SEQ ID NO 137
<211> LENGTH: 318
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 137
tatgagetga eteageeace eteagtgtee gtgteeceag gacagacage eageeteace
teccetgtge tggteateta teaagatage aageggeeet cagggateee tgagegatte
tctggctcca actctgggaa cacagccact ctgaccatca gcgggaccca ggctatggat
gaggetgaet attactgtea ggegtgggae ageageactg catgtgtett eggaactggg
                                                                   300
                                                                   318
accaaggtca ccgtccta
<210> SEQ ID NO 138
<211> LENGTH: 106
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 138
Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln Thr
                                 1.0
Ala Ser Leu Thr Cys Ser Gly Asp Lys Leu Gly Asp Arg Tyr Ala Ser
Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Val Leu Val Ile Tyr Gln
                          40
Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn
                    55
Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp
Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser Thr Ala Cys Val
Phe Gly Thr Gly Thr Lys Val Thr Val Leu
          100
<210> SEQ ID NO 139
<211> LENGTH: 363
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 139
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc
```

```
tcctgtgcag cgtctggatt caccctcagt agctatggca tgcactgggt ccgccaggct
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg atgaaagtaa taaatactat
                                                                     180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgttgaat
                                                                     240
ctgcaaatga acagcctgag agccgaggac acggctttgt attactgtgc gagagccggt
                                                                     300
atagcagcag cccttgatgc ttttgatatc tggggccaag ggacaatggt caccgtctct
                                                                     360
t.ca
                                                                     363
<210> SEQ ID NO 140
<211> LENGTH: 121
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 140
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Leu Ser Ser Tyr
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Val Ile Trp Tyr Asp Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Asn
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys
Ala Arg Ala Gly Ile Ala Ala Ala Leu Asp Ala Phe Asp Ile Trp Gly
                             105
Gln Gly Thr Met Val Thr Val Ser Ser
       115
<210> SEQ ID NO 141
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 141
Ser Gly Asp Lys Leu Gly Asp Arg Tyr Ala Ser
<210> SEQ ID NO 142
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 142
Gln Asp Ser Lys Arg Pro Ser
<210> SEQ ID NO 143
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 143
Gln Ala Trp Asp Ser Ser Thr Ala Cys Val
```

```
<210> SEQ ID NO 144
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 144
Ser Tyr Gly Met His
1 5
<210> SEQ ID NO 145
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 145
Val Ile Trp Tyr Asp Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
               5
Gly
<210> SEQ ID NO 146
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 146
Ala Gly Ile Ala Ala Ala Leu Asp Ala Phe Asp Ile
<210> SEQ ID NO 147
<211> LENGTH: 333
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 147
cagtetgtgt tgaegeagee geeeteactg tetggggeee cagggeagag ggteaceate
                                                                      60
tectgeactg ggggeagete caacateggg teaggttttg etatatactg gtaceageag
                                                                      120
cttccaggaa cagcccccaa actcctcatc tatggtgaca acattcggcc ctcaggggtc
                                                                      180
cctgaccgat tctctggctc caagtctggc acctccgcct ccctggccat cactgggctc
                                                                      240
caggetgagg atgaggetga ttattactge cagteetatg acageageet gagtggtteg
                                                                      300
gtattcggcg gagggaccaa gctgaccgtc cta
                                                                      333
<210> SEQ ID NO 148
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 148
Gln Ser Val Leu Thr Gln Pro Pro Ser Leu Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Thr Gly Gly Ser Ser Asn Ile Gly Ser Gly
                                25
Phe Ala Ile Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu
                        40
Leu Ile Tyr Gly Asp Asn Ile Arg Pro Ser Gly Val Pro Asp Arg Phe
                       55
```

```
Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser
Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
                               105
<210> SEQ ID NO 149
<211> LENGTH: 351
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 149
caggttcagc tggtgcagtc tggagctgag gtgaagaagc ctgggggcctc agtgaaggtc
tcctgcaagg cttctggtta cacctttacc agctatggta tcagctgggt gcgacaggcc
cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatggtga aacaaacact
gcacagaaac tccagggcag agtcaccatg accacagaca catccacgag cacagcctac
atggagetga ggageetgag atetgaegae aeggeegtgt attaetgtge gagagaggaa
ctaggggctt ttgatatctg gggccaaggg acaatggtca ccgtctcttc a
<210> SEQ ID NO 150
<211> LENGTH: 117
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 150
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                           40
Gly Trp Ile Ser Ala Tyr Asn Gly Glu Thr Asn Thr Ala Gln Lys Leu
                       55
Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
                   70
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Glu Glu Leu Gly Ala Phe Asp Ile Trp Gly Gln Gly Thr Met
           100
                                105
Val Thr Val Ser Ser
      115
<210> SEQ ID NO 151
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 151
Thr Gly Gly Ser Ser Asn Ile Gly Ser Gly Phe Ala Ile Tyr
<210> SEQ ID NO 152
<211> LENGTH: 7
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 152
Gly Asp Asn Ile Arg Pro Ser
<210> SEQ ID NO 153
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 153
Gln Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val
<210> SEQ ID NO 154
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 154
Ser Tyr Gly Ile Ser
<210> SEQ ID NO 155
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 155
Trp Ile Ser Ala Tyr Asn Gly Glu Thr Asn Thr Ala Gln Lys Leu Gln
                                      10
Gly
<210> SEQ ID NO 156
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 156
Glu Glu Leu Gly Ala Phe Asp Ile
<210> SEQ ID NO 157
<211> LENGTH: 321
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 157
tectatgage tgacteagee acceteagtg teegtgteec caggacagae ageeaceate
acctgctctg gagataaatt gggggaaaga tatgcgtgtt ggtatcagca gaggccaggc
cagteceetg tactggteat etateaagat ateaagegge eeteagggat eeetgagega
ttctctggct ccaactctgg gaacacagcc actctgacca tcagcgggac ccaggctatg
gatgaggctg actatttctg tcaggcgtgg tacagcagca ccaatgtgct tttcggcgga
gggaccaagc tgaccgtcct a
<210> SEQ ID NO 158
<211> LENGTH: 107
```

```
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 158
Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln
                                  10
Thr Ala Thr Ile Thr Cys Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala 20 \\ 25 \\ 30
Cys Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Val Leu Val Ile Tyr
Gln Asp Ile Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
                55
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met
Asp Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val
Leu Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
<210> SEQ ID NO 159
<211> LENGTH: 363
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 159
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc
teetgtgeag egtetggatt eacetteagt agetatggea tgeaetgggt eegeeagget
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg ctgaaagtaa taaatactac
                                                                     180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat
                                                                     240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagcccag
                                                                     300
gagggtatag cccctgacgc ttttgatatc tggggccaag gaacaatggt caccgtctct
                                                                     360
t.ca
                                                                      363
<210> SEQ ID NO 160
<211> LENGTH: 121
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 160
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                25
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Val Ile Trp Tyr Ala Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Ala Gln Glu Gly Ile Ala Pro Asp Ala Phe Asp Ile Trp Gly
                             105
```

```
Gln Gly Thr Met Val Thr Val Ser Ser
     115
<210> SEQ ID NO 161
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 161
Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Cys
1 5
                                   10
<210> SEQ ID NO 162
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 162
Gln Asp Ile Lys Arg Pro Ser
<210> SEQ ID NO 163
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 163
Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
        5
<210> SEQ ID NO 164
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 164
Ser Tyr Gly Met His
<210> SEQ ID NO 165
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 165
Val Ile Trp Tyr Ala Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
             5
                        10
Gly
<210> SEQ ID NO 166
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 166
Ala Gln Glu Gly Ile Ala Pro Asp Ala Phe Asp Ile
<210> SEQ ID NO 167
<211> LENGTH: 321
<212> TYPE: DNA
```

```
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 167
tectatgage tgacteagee acceteagtg teegtgteee caggacagae ageeaceate
                                                                       60
acctgctctg gagataaatt gggggaaaga tatgcgtgtt ggtatcagca gaggccaggc
                                                                     120
cagtecectg tactggteat ctateaagat ageaagegge ceteagggat ceetgagega
                                                                     180
ttctctggct ccaactctgg gaacacagcc actctgacca tcagcgggac ccaggctatg
                                                                     240
gatgaggctg actatttctg tcaggcgtgg tacagcagca ccaatgtgct tttcggcgga
                                                                     300
gggaccaagc tgaccgtcct a
                                                                     321
<210> SEQ ID NO 168
<211> LENGTH: 107
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 168
Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln
Thr Ala Thr Ile Thr Cys Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala
Cys Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Val Leu Val Ile Tyr
Gln Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met
Asp Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val
Leu Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
<210> SEQ ID NO 169
<211> LENGTH: 363
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 169
caggtgcage tggtggagte tgggggggge gtggtccage etgggaggte cetgagaete
                                                                       60
tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccgccaggct
                                                                     120
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg ctgaaagtaa taaatactac
                                                                     180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat
                                                                      240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagcccag
gagggtatag cccctgacgc ttttgatatc tggggccaag gaacaatggt caccgtctct
tca
                                                                      363
<210> SEQ ID NO 170
<211> LENGTH: 121
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 170
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
```

```
10
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                25
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                          40
Ala Val Ile Trp Tyr Ala Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                   70
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
               85
                                    90
Ala Arg Ala Gln Glu Gly Ile Ala Pro Asp Ala Phe Asp Ile Trp Gly
                              105
Gln Gly Thr Met Val Thr Val Ser Ser
       115
<210> SEQ ID NO 171
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 171
Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Cys
<210> SEQ ID NO 172
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 172
Gln Asp Ser Lys Arg Pro Ser
<210> SEQ ID NO 173
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 173
Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
              5
<210> SEQ ID NO 174
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 174
Ser Tyr Gly Met His
<210> SEQ ID NO 175
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 175
Val Ile Trp Tyr Ala Glu Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
```

```
5
                                    10
                                                        15
Gly
<210> SEQ ID NO 176
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 176
Ala Gln Glu Gly Ile Ala Pro Asp Ala Phe Asp Ile
               5
<210> SEQ ID NO 177
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 177
aattttatgc tgactcagcc ccactctgtg tcggagtctc cggggaagac ggtaaccatc
tectgeacce geageagtgg cageattgee agetactatg tgeagtggta ceageagege
cogggoagtt cocccaccac tgtgatctat gaggatagec agagaccete tggggtecet
gateggttet etggeteeat egacagetee tecaactetg ceteceteae catetetgga
ctqaaqactq aqqacqaqqc tqactattat tqtcaqtctt atqataqcaq caatqtqqta
ttcggcggag ggaccaagct gaccgtccta
                                                                      330
<210> SEQ ID NO 178
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 178
Asn Phe Met Leu Thr Gln Pro His Ser Val Ser Glu Ser Pro Gly Lys
                                    10
Thr Val Thr Ile Ser Cys Thr Arg Ser Ser Gly Ser Ile Ala Ser Tyr
                                25
Tyr Val Gln Trp Tyr Gln Gln Arg Pro Gly Ser Ser Pro Thr Thr Val
                            40
Ile Tyr Glu Asp Ser Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Ile Asp Ser Ser Ser Asn Ser Ala Ser Leu Thr Ile Ser Gly
Leu Lys Thr Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser
Ser Asn Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
                                105
<210> SEQ ID NO 179
<211> LENGTH: 366
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 179
caggtacagc tgcagcagtc aggtccagga ctggtgaagc cctcgcagac cctctcactc
acctgtgcca tctccgggga cagtgtctct agcaacagtg ctgcttggaa ctggatcagg
```

```
cagtccccat cgagaggcct tgagtggctg ggaaggacat actacaggtc caagtggttt
aatgattatg cagtatctgt gcaaagtcga ataaccatca acccagacac atccaagaac
                                                                      240
cagttetece tgeagetgaa etetgtgaet eeegaggaea eggetgtgta ttaetgtgea
                                                                      300
agagggattg tetteteeta egetatggae gtetggggee aagggaeeae ggteaeegte
                                                                      360
tcctca
                                                                      366
<210> SEQ ID NO 180
<211> LENGTH: 122
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 180
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
                                   10
Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu
Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Phe Asn Asp Tyr Ala
Val Ser Val Gln Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
Tyr Tyr Cys Ala Arg Gly Ile Val Phe Ser Tyr Ala Met Asp Val Trp
Gly Gln Gly Thr Thr Val Thr Val Ser Ser
<210> SEQ ID NO 181
<211> LENGTH: 13
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 181
Thr Arg Ser Ser Gly Ser Ile Ala Ser Tyr Tyr Val Gln
              5
<210> SEQ ID NO 182
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 182
Glu Asp Ser Gln Arg Pro Ser
<210> SEQ ID NO 183
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 183
Gln Ser Tyr Asp Ser Ser Asn Val Val
```

```
<210> SEQ ID NO 184
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 184
Ser Asn Ser Ala Ala Trp Asn
<210> SEQ ID NO 185
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 185
Arg Thr Tyr Tyr Arg Ser Lys Trp Phe Asn Asp Tyr Ala Val Ser Val
               5
                                    10
Gln Ser
<210> SEQ ID NO 186
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 186
Gly Ile Val Phe Ser Tyr Ala Met Asp Val
<210> SEQ ID NO 187
<211> LENGTH: 321
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 187
tectatgage tgacteagee ecceteagtg teegtgteee eaggacagae agecageate
                                                                       60
acctgttctg gagataaaat gggggaaaga tatgcttgct ggtatcagca gaagccaggc
                                                                      120
cagtececta tactggteat etateaagat accaagegge eeteagggat eeetgagega
                                                                      180
ttctctggct ccaactctgg gaacacagcc actctgacca tcagcgggac ccaggctatg
                                                                      240
gatgaggetg actattactg teaggegtgg tacageagea ceaatgtggt atteggegga
                                                                      300
gggaccaagc tgaccgtcct a
                                                                      321
<210> SEQ ID NO 188
<211> LENGTH: 107
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 188
Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln
                       10
Thr Ala Ser Ile Thr Cys Ser Gly Asp Lys Met Gly Glu Arg Tyr Ala
Cys Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Ile Leu Val Ile Tyr
Gln Asp Thr Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met
```

```
Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
<210> SEQ ID NO 189
<211> LENGTH: 363
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 189
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc
                                                                         60
teetgtgeag egtetggatt eacetteagt aactatggea tgeactgggt eegeeagget
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg ttggaagtaa taaatactat
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagcccag
gagggtatgg cccctgatgc ttttgatatc tggggccaag ggacaatggt caccgtctct
<210> SEQ ID NO 190
<211> LENGTH: 121
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 190
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                            40
Ala Val Ile Trp Tyr Val Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                    70
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Ala Gln Glu Gly Met Ala Pro Asp Ala Phe Asp Ile Trp Gly
            100
                                 105
Gln Gly Thr Met Val Thr Val Ser Ser
       115
<210> SEQ ID NO 191
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 191
Ser Gly Asp Lys Met Gly Glu Arg Tyr Ala Cys
<210> SEQ ID NO 192
<211> LENGTH: 7
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 192
Gln Asp Thr Lys Arg Pro Ser
<210> SEQ ID NO 193
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 193
Gln Ala Trp Tyr Ser Ser Thr Asn Val Val
<210> SEQ ID NO 194
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 194
Asn Tyr Gly Met His
<210> SEQ ID NO 195
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 195
Val Ile Trp Tyr Val Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
Gly
<210> SEQ ID NO 196
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 196
Ala Gln Glu Gly Met Ala Pro Asp Ala Phe Asp Ile
<210> SEO ID NO 197
<211> LENGTH: 717
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 197
atgaggetee etgeteaget eetggggetg etaatgetet gggtetetgg atceagtggg
                                                                        60
gatattgtga tgacccagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc
atctcctgca ggtctagtca gagcctcctg catagtgatg gatacaacta tttggattgg
tacctgcaga agtcagggca gtctccacag cgcctgatct atatgggttc taatcgggcc
tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc
agcagagtgg aggctgagga tgttggggtt tattactgca tgcaagctct acaaactccg
                                                                      420
ctcactatcg gcggagggac caaggtggag atcaaacgaa ctgtggctgc accatctgtc
ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg
```

ctgaataact tctatcccag agaggccaaa gtacagtgga aggtggataa cgccctccaa	540										
tcgggtaact cccaggagag tgtcacagag caggacagca aggacagcac ctacagcctc	600										
agcagcaccc tgacgctgag caaagcagac tacgagaaac acaaagtcta cgcctgcgaa	660										
gtcacccatc agggcctgag ctcgcccgtc acaaagagct tcaacagggg agagtgt											
<210> SEQ ID NO 198 <211> LENGTH: 239 <212> TYPE: PRT <213> ORGANISM: Homo sapiens											
<400> SEQUENCE: 198											
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser 1 5 10 15											
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro 20 25 30											
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser 35 40 45											
Leu Leu His Ser Asp Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys 50 55 60											
Ser Gly Gln Ser Pro Gln Arg Leu Ile Tyr Met Gly Ser Asn Arg Ala 65 70 75 80											
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe 85 90 95											
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr 100 105 110											
Cys Met Gln Ala Leu Gln Thr Pro Leu Thr Ile Gly Gly Gly Thr Lys 115 120 125											
Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140											
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu 145 150 155 160											
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp 165 170 175											
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp 180 185 190											
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys 195 200 205											
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln 210 215 220											
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 235											
<210> SEQ ID NO 199 <211> LENGTH: 1401 <212> TYPE: DNA <213> ORGANISM: Homo sapiens											
<400> SEQUENCE: 199											
atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag	60										
gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc	120										
tgtgcagcct ctggattcac cttcagtagt tatggcatgc actgggtccg tcaggctcca	180										

ggcaaggggc tg	gagtgggt	ggcagttatt	tcatatgatg	gaagtaatga	atactatgca	240
gactccgtga ag	ggccgatt	caccatctcc	agagacaatt	ccaagaacac	gctgtatctg	300
caaatgaaca gc	ctgagagc	tgaggacacg	gctgtatatt	actgtgtgag	agatgtgtgg	360
ttcggggagt cc	ctccacgg	tttggacgtc	tggggccaag	ggaccacggt	caccgtctcc	420
tcagcctcca cc	aagggccc	atcggtcttc	cccctggcgc	cctgctccag	gagcacctcc	480
gagagcacag cg	gccctggg	ctgcctggtc	aaggactact	tccccgaacc	ggtgacggtg	540
tcgtggaact ca	ggcgctct	gaccagcggc	gtgcacacct	tcccagctgt	cctacagtcc	600
tcaggactct ac	tccctcag	cagcgtggtg	accgtgccct	ccagcaactt	cggcacccag	660
acctacacct gc	aacgtaga	tcacaagccc	agcaacacca	aggtggacaa	gacagttgag	720
cgcaaatgtt gt	gtcgagtg	cccaccgtgc	ccagcaccac	ctgtggcagg	accgtcagtc	780
ttcctcttcc cc	ccaaaacc	caaggacacc	ctcatgatct	cccggacccc	tgaggtcacg	840
tgcgtggtgg tg	gacgtgag	ccacgaagac	cccgaggtcc	agttcaactg	gtacgtggac	900
ggcgtggagg tg	cataatgc	caagacaaag	ccacgggagg	agcagttcaa	cagcacgttc	960
cgtgtggtca gc	gtcctcac	cgttgtgcac	caggactggc	tgaacggcaa	ggagtacaag	1020
tgcaaggtct cc	aacaaagg	cctcccagcc	cccatcgaga	aaaccatctc	caaaaccaaa	1080
gggcagcccc ga	gaaccaca	ggtgtacacc	ctgcccccat	cccgggagga	gatgaccaag	1140
aaccaggtca gc	ctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgccgtggag	1200
tgggagagca at	gggcagcc	ggagaacaac	tacaagacca	cacctcccat	gctggactcc	1260
gacggctcct tc	ttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	1320
aacgtcttct ca	tgctccgt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	1380
ctctccctgt ct	ccgggtaa	a				1401
<210> SEQ ID : <211> LENGTH: <212> TYPE: P <213> ORGANIS	467 RT	sapiens				
<400> SEQUENC	E: 200					
Met Glu Phe G 1	ly Leu S 5	er Trp Val	Phe Leu Val 10	Ala Leu Le	ı Arg Gly 15	
Val Gln Cys G			Glu Ser Gly 25	Gly Gly Vai	l Val Gln	
D Gl 3 G	T 7		C 71- 71-	Carr Clas Dis	- Ml Dl	

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45

Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 $\,$ 60

Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Glu Tyr Tyr Ala 65 707075 Asn Glu Tyr Tyr Ala 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 $$ 90 $$ 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Tyr Tyr Cys Val Arg Asp Val Trp Phe Gly Glu Ser Leu His Gly Leu 115 $$ 120 $$ 125

Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr 130 \$140

Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser 150 Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 165 170 Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 200 Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys 215 Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu 230 Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 265 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly 330 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile 345 340 Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val 360 Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 375 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 390 395 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 405 410 Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 440 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 455 Pro Gly Lys 465 <210> SEQ ID NO 201 <211> LENGTH: 366 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 201 caggttcagc tggtgcagtc tggagatgag gtgaagaagc ctggggcctc agtgaaggtc tcctqcaaqq cttctqqtta cacctttatc aaqtatqqaa tcaqttqqqt qcqacaqqcc

```
cctggacaag ggcttgagtg gatgggatgg atcggcgctt tcaatggtaa cacagactat
                                                                       180
gcacggaacc tccaggccag agtcaccatg accacagaca catccacgag cacagcctac
                                                                       240
atggagctga ggagcctgag atctgacgac acggccgtat attactgtgc gagagagggc
                                                                       300
tggaacgacg actacttctc cggtttggac gtctggggcc aagggaccac ggtcaccgtc
                                                                       360
tcctca
                                                                       366
<210> SEQ ID NO 202
<211> LENGTH: 122
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 202
Gln Val Gln Leu Val Gln Ser Gly Asp Glu Val Lys Lys Pro Gly Ala
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ile Lys Tyr
Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
Gly Trp Ile Gly Ala Phe Asn Gly Asn Thr Asp Tyr Ala Arg Asn Leu
Gln Ala Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Glu Gly Trp Asn Asp Asp Tyr Phe Ser Gly Leu Asp Val Trp $100$
Gly Gln Gly Thr Thr Val Thr Val Ser Ser
<210> SEQ ID NO 203
<211> LENGTH: 5
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 203
Lys Tyr Gly Ile Ser
<210> SEQ ID NO 204
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 204
Trp Ile Gly Ala Phe Asn Gly Asn Thr Asp Tyr Ala Arg Asn Leu Gln
                5
                                    10
Ala
<210> SEQ ID NO 205
<211> LENGTH: 13
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 205
Glu Gly Trp Asn Asp Asp Tyr Phe Ser Gly Leu Asp Val
```

<210> SEQ ID NO 206

-continued

<211> LENGTH: 1401 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 206 atggactgga cctggagcat ccttttcttg gtggcagcag caacaggtgc ccactcccag 60 gttcagctgg tgcagtctgg agatgaggtg aagaagcctg gggcctcagt gaaggtctcc 120 tgcaaggctt ctggttacac ctttatcaag tatggaatca gttgggtgcg acaggcccct 180 ggacaagggc ttgagtggat gggatggatc ggcgctttca atggtaacac agactatgca 240 cggaacctcc aggccagagt caccatgacc acagacacat ccacgagcac agcctacatg 300 gagetgagga geetgagate tgaegacaeg geegtatatt aetgtgegag agagggetgg 360 aacgacgact acttctccgg tttggacgtc tggggccaag ggaccacggt caccgtctcc 420 teagecteca ecaagggeee ateggtette eccetggege eetgeteeag gageacetee gagageacag eggeeetggg etgeetggte aaggaetaet teeeegaace ggtgaeggtg tegtggaact caggegetet gaccagegge gtgcacacet teccagetgt cetacagtee traggartet acteritag ragegtggtg acceptgeret reagraactt regearrage acctacacct qcaacqtaqa tcacaaqccc aqcaacacca aqqtqqacaa qacaqttqaq cgcaaatgtt gtgtcgagtg cccaccgtgc ccagcaccac ctgtggcagg accgtcagtc 780 840 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcacg tgcgtggtgg tggacgtgag ccacgaagac cccgaggtcc agttcaactg gtacgtggac 900 960 qqcqtqqaqq tqcataatqc caaqacaaaq ccacqqqaqq aqcaqttcaa caqcacqttc cqtqtqqtca qcqtcctcac cqttqtqcac caqqactqqc tqaacqqcaa qqaqtacaaq 1020 tgcaaggtct ccaacaaagg cctcccagcc cccatcgaga aaaccatctc caaaaccaaa 1080 1140 qqqcaqcccc qaqaaccaca qqtqtacacc ctqcccccat cccqqqaqqa qatqaccaaq aaccaggtca gcctgacctg cctggtcaaa ggcttctacc ccagcgacat cgccgtggag 1200 tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccat gctggactcc 1260 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380 ctctccctgt ctccgggtaa a 1401 <210> SEQ ID NO 207 <211> LENGTH: 467 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 207 Met Asp Trp Thr Trp Ser Ile Leu Phe Leu Val Ala Ala Ala Thr Gly Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Asp Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ile Lys Tyr Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu

Glu 65	Trp	Met	Gly	Trp	Ile 70	Gly	Ala	Phe	Asn	Gly 75	Asn	Thr	Asp	Tyr	Ala 80
Arg	Asn	Leu	Gln	Ala 85	Arg	Val	Thr	Met	Thr 90	Thr	Asp	Thr	Ser	Thr 95	Ser
Thr	Ala	Tyr	Met 100	Glu	Leu	Arg	Ser	Leu 105	Arg	Ser	Asp	Asp	Thr 110	Ala	Val
Tyr	Tyr	Cys 115	Ala	Arg	Glu	Gly	Trp 120	Asn	Asp	Asp	Tyr	Phe 125	Ser	Gly	Leu
Asp	Val 130	Trp	Gly	Gln	Gly	Thr 135	Thr	Val	Thr	Val	Ser 140	Ser	Ala	Ser	Thr
Lys 145	Gly	Pro	Ser	Val	Phe 150	Pro	Leu	Ala	Pro	Сув 155	Ser	Arg	Ser	Thr	Ser 160
Glu	Ser	Thr	Ala	Ala 165	Leu	Gly	Cys	Leu	Val 170	Lys	Asp	Tyr	Phe	Pro 175	Glu
Pro	Val	Thr	Val 180	Ser	Trp	Asn	Ser	Gly 185	Ala	Leu	Thr	Ser	Gly 190	Val	His
Thr	Phe	Pro 195	Ala	Val	Leu	Gln	Ser 200	Ser	Gly	Leu	Tyr	Ser 205	Leu	Ser	Ser
Val	Val 210	Thr	Val	Pro	Ser	Ser 215	Asn	Phe	Gly	Thr	Gln 220	Thr	Tyr	Thr	Сув
Asn 225	Val	Asp	His	Lys	Pro 230	Ser	Asn	Thr	Lys	Val 235	Asp	Lys	Thr	Val	Glu 240
Arg	ГÀа	CÀa	CÀa	Val 245	Glu	CÀa	Pro	Pro	Сув 250	Pro	Ala	Pro	Pro	Val 255	Ala
Gly	Pro	Ser	Val 260	Phe	Leu	Phe	Pro	Pro 265	ГЛа	Pro	ГЛа	Asp	Thr 270	Leu	Met
Ile	Ser	Arg 275	Thr	Pro	Glu	Val	Thr 280	Càa	Val	Val	Val	Asp 285	Val	Ser	His
Glu	Asp 290	Pro	Glu	Val	Gln	Phe 295	Asn	Trp	Tyr	Val	300	Gly	Val	Glu	Val
His 305	Asn	Ala	Lys	Thr	310	Pro	Arg	Glu	Glu	Gln 315	Phe	Asn	Ser	Thr	Phe 320
Arg	Val	Val	Ser	Val 325	Leu	Thr	Val	Val	His 330	Gln	Asp	Trp	Leu	Asn 335	Gly
ГÀа	Glu	Tyr	Lys 340	CÀa	ГÀЗ	Val	Ser	Asn 345	Lys	Gly	Leu	Pro	Ala 350	Pro	Ile
Glu	Lys	Thr 355	Ile	Ser	ГÀЗ	Thr	360 Lys	Gly	Gln	Pro	Arg	Glu 365	Pro	Gln	Val
Tyr	Thr 370	Leu	Pro	Pro	Ser	Arg 375	Glu	Glu	Met	Thr	380 T\u00e4a	Asn	Gln	Val	Ser
Leu 385	Thr	Cys	Leu	Val	390	Gly	Phe	Tyr	Pro	Ser 395	Asp	Ile	Ala	Val	Glu 400
Trp	Glu	Ser	Asn	Gly 405	Gln	Pro	Glu	Asn	Asn 410	Tyr	Lys	Thr	Thr	Pro 415	Pro
Met	Leu	Asp	Ser 420	Asp	Gly	Ser	Phe	Phe 425	Leu	Tyr	Ser	Lys	Leu 430	Thr	Val
Asp	Lys	Ser 435	Arg	Trp	Gln	Gln	Gly 440	Asn	Val	Phe	Ser	Cys 445	Ser	Val	Met
His	Glu 450	Ala	Leu	His	Asn	His 455	Tyr	Thr	Gln	Lys	Ser 460	Leu	Ser	Leu	Ser

Pro Gly Lys 465 <210> SEQ ID NO 208 <211> LENGTH: 708 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEOUENCE: 208 atggcctggt ctcctctct cctcactctc ctcgctcact gcacagggtc ctgggcccag 60 tetgtgttga egeageegee eteaetgtet ggggeeceag ggeagagggt eaceatetee 120 tgcactgggg gcagctccaa catcgggtca ggttttgcta tatactggta ccagcagctt 180 ccaggaacag cccccaaact cctcatcttt ggtgacaaca ttcggccctc aggggtccct 240 gaccgattct ctggctccaa gtctggcacc tccgcctccc tggccatcac tgggctccag gctgaggatg aggctgatta ttactgccag tcctatgaca gcagcctgag tggttcggtt tteggeggag ggaccaaget gacegteeta agteageeca aggetgeece eteggteact ctgttcccgc cctcctctga ggagcttcaa gccaacaagg ccacactggt gtgtctcata agtgacttct accogggage cgtgacagtg gcctggaagg cagatagcag ccccgtcaag gegggagtgg agaccaccac accetecaaa caaagcaaca acaagtaege ggecageage tatctqaqcc tqacqcctqa qcaqtqqaaq tcccacaqaa qctacaqctq ccaqqtcacq catqaaqqqa qcaccqtqqa qaaqacaqtq qcccctacaq aatqttca <210> SEQ ID NO 209 <211> LENGTH: 236 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 209 Met Ala Trp Ser Pro Leu Leu Leu Thr Leu Leu Ala His Cys Thr Gly 10 Ser Trp Ala Gln Ser Val Leu Thr Gln Pro Pro Ser Leu Ser Gly Ala 25 Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Gly Ser Ser Asn Ile 40 Gly Ser Gly Phe Ala Ile Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Phe Gly Asp Asn Ile Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr 105 Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro 135 Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser

170

165

Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser 185 Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln 200 Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser 215 Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 230 <210> SEQ ID NO 210 <211> LENGTH: 1386 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 210 atggactgga cctggagcat ccttttcttg gtggcagcag caacaggtgc ccactcccag gttcagctgg tgcagtctgg agctgaggtg aagaagcctg gggcctcagt gaaggtctcc tgcaaggctt ctggttacac ctttaccagc tatggtatca gctgggtgcg acaggcccct ggacaagggc ttgagtggat gggatggatc agcgcttaca atggtgaaaa aaacactgca cagaaactcc agggcagagt caccatgacc acagacacat ccacgagcac agcctacatg gagetgagga geetgagate tgaegacaeg geegtgtatt aetgtgegag agaggaacta ggggcttttg atatctgggg ccaagggaca atggtcaccg tetettcage etccaccaag 420 ggcccatcgg tcttcccct ggcgcctgc tccaggagca cctccgagag cacagcggcc 480 ctgggctgcc tggtcaagga ctacttcccc gaaccggtga cggtgtcgtg gaactcaggc 540 getetgacea geggegtgea cacettecea getgteetac agteeteagg actetactee 600 ctcagcagcg tggtgaccgt gccctccagc aacttcggca cccagaccta cacctgcaac 660 gtagatcaca agcccagcaa caccaaggtg gacaagacag ttgagcgcaa atgttgtgtc 720 gagtgcccac cgtgcccagc accacctgtg gcaggaccgt cagtcttcct cttcccccca 780 aaacccaagg acaccctcat gatctcccgg acccctgagg tcacgtgcgt ggtggtggac 840 gtgagccacg aagaccccga ggtccagttc aactggtacg tggacggcgt ggaggtgcat 900 aatgccaaga caaagccacg ggaggagcag ttcaacagca cgttccgtgt ggtcagcgtc 960 ctcaccgttg tgcaccagga ctggctgaac ggcaaggagt acaagtgcaa ggtctccaac 1020 aaaggeetee cageeeccat egagaaaace ateteeaaaa eeaaagggea geeeegagaa 1080 ccacaggtgt acaccetgee eccateeegg gaggagatga ecaagaacca ggteageetg 1140 acctgcctgg tcaaaggctt ctaccccagc gacatcgccg tggagtggga gagcaatggg 1200 cagceggaga acaactacaa gaccacacet eccatgetgg acteegaegg eteettette 1260 ctctacagca agctcaccgt ggacaagagc aggtggcagc agggggaacgt cttctcatgc 1320 1380 teegtgatge atgaggetet geacaaceae tacaegeaga agageetete eetgteteeg 1386 ggtaaa <210> SEQ ID NO 211

<211> LENGTH: 462

<212> TYPE: PRT

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 211

Met 1	Asp	Trp	Thr	Trp 5	Ser	Ile	Leu	Phe	Leu 10	Val	Ala	Ala	Ala	Thr 15	Gly
Ala	His	Ser	Gln 20	Val	Gln	Leu	Val	Gln 25	Ser	Gly	Ala	Glu	Val 30	Lys	ГЛа
Pro	Gly	Ala 35	Ser	Val	Lys	Val	Ser 40	Cha	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
Thr	Ser 50	Tyr	Gly	Ile	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Gly	Leu
Glu 65	Trp	Met	Gly	Trp	Ile 70	Ser	Ala	Tyr	Asn	Gly 75	Glu	Lys	Asn	Thr	Ala 80
Gln	Lys	Leu	Gln	Gly 85	Arg	Val	Thr	Met	Thr 90	Thr	Asp	Thr	Ser	Thr 95	Ser
Thr	Ala	Tyr	Met 100	Glu	Leu	Arg	Ser	Leu 105	Arg	Ser	Asp	Asp	Thr 110	Ala	Val
Tyr	Tyr	Cys 115	Ala	Arg	Glu	Glu	Leu 120	Gly	Ala	Phe	Asp	Ile 125	Trp	Gly	Gln
Gly	Thr 130	Met	Val	Thr	Val	Ser 135	Ser	Ala	Ser	Thr	Lys 140	Gly	Pro	Ser	Val
Phe 145	Pro	Leu	Ala	Pro	Cys 150	Ser	Arg	Ser	Thr	Ser 155	Glu	Ser	Thr	Ala	Ala 160
Leu	Gly	Cys	Leu	Val 165	Lys	Asp	Tyr	Phe	Pro 170	Glu	Pro	Val	Thr	Val 175	Ser
Trp	Asn	Ser	Gly 180	Ala	Leu	Thr	Ser	Gly 185	Val	His	Thr	Phe	Pro 190	Ala	Val
Leu	Gln	Ser 195	Ser	Gly	Leu	Tyr	Ser 200	Leu	Ser	Ser	Val	Val 205	Thr	Val	Pro
Ser	Ser 210	Asn	Phe	Gly	Thr	Gln 215	Thr	Tyr	Thr	CÀa	Asn 220	Val	Asp	His	Lys
Pro 225	Ser	Asn	Thr	ГЛа	Val 230	Asp	Lys	Thr	Val	Glu 235	Arg	ГЛа	Cya	Cys	Val 240
Glu	Cys	Pro	Pro	Cys 245	Pro	Ala	Pro	Pro	Val 250	Ala	Gly	Pro	Ser	Val 255	Phe
Leu	Phe	Pro	Pro 260	Lys	Pro	Lys	Asp	Thr 265	Leu	Met	Ile	Ser	Arg 270	Thr	Pro
Glu	Val	Thr 275	Cys	Val	Val	Val	Asp 280	Val	Ser	His	Glu	Asp 285	Pro	Glu	Val
	Phe 290		Trp	Tyr		Asp 295		Val	Glu		His 300		Ala	Lys	Thr
105 305	Pro	Arg	Glu	Glu	Gln 310	Phe	Asn	Ser	Thr	Phe 315	Arg	Val	Val	Ser	Val 320
Leu	Thr	Val	Val	His 325	Gln	Asp	Trp	Leu	Asn 330	Gly	Lys	Glu	Tyr	Lys 335	Сла
Lys	Val	Ser	Asn 340	Lys	Gly	Leu	Pro	Ala 345	Pro	Ile	Glu	Lys	Thr 350	Ile	Ser
Lys	Thr	Lys 355	Gly	Gln	Pro	Arg	Glu 360	Pro	Gln	Val	Tyr	Thr 365	Leu	Pro	Pro
Ser	Arg 370	Glu	Glu	Met	Thr	Lys 375	Asn	Gln	Val	Ser	Leu 380	Thr	Сув	Leu	Val
Lys 385	Gly	Phe	Tyr	Pro	Ser 390	Asp	Ile	Ala	Val	Glu 395	Trp	Glu	Ser	Asn	Gly 400
Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Met	Leu	Asp	Ser	Asp

```
405
                                  410
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
           420
                              425
Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
                        440
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
   450
                      455
<210> SEQ ID NO 212
<211> LENGTH: 318
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 212
tatgagetga eteageeace eteagtgtee gtgteeceag gacagacage eageeteace
teccetgtge tggtcateta teaagatage aageggeeet eagggateee tgagegatte
tetggeteca actetgggaa cacagecaet etgaecatea gegggaecea ggetatggat
gaggetgaet attactgtca ggegtgggae ageageactg catetgtett eggaactggg
accaaggtca ccgtccta
<210> SEQ ID NO 213
<211> LENGTH: 106
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 213
Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln Thr
                                  10
Ala Ser Leu Thr Cys Ser Gly Asp Lys Leu Gly Asp Arg Tyr Ala Ser
Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Val Leu Val Ile Tyr Gln
                         40
Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn
                      55
Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp
                  70
Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser Thr Ala Ser Val
Phe Gly Thr Gly Thr Lys Val Thr Val Leu
          100
<210> SEQ ID NO 214
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 214
Ser Gly Asp Lys Leu Gly Asp Arg Tyr Ala Ser
<210> SEQ ID NO 215
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
```

```
<400> SEOUENCE: 215
Gln Asp Ser Lys Arg Pro Ser
<210> SEQ ID NO 216
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 216
Gln Ala Trp Asp Ser Ser Thr Ala Ser Val
               5
<210> SEQ ID NO 217
<211> LENGTH: 702
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 217
atggacatga gggtgcccgc tcagctcctg gggctcctgc tgctgtggct gagaggtgcc
agatgttatg agetgaetea gecaecetea gtgteegtgt ceceaggaea gaeageeage
ctcacctgct ctggagataa attgggggat agatatgctt cctggtatca gcagaagcca
ggccagtccc ctgtgctggt catctatcaa gatagcaagc ggccctcagg gatccctgag
                                                                      240
cgattctctg gctccaactc tgggaacaca gccactctga ccatcagcgg gacccaggct
atggatgagg ctgactatta ctgtcaggcg tgggacagca gcactgcatc tgtcttcgga
                                                                      360
actgggacca aggtcaccgt cctaggtcag cccaaggcca accccactgt cactctgttc
                                                                      420
coqcoctcot otqaqqaqot ocaaqocaac aaqqocacac taqtqtqtot qatcaqtqac
                                                                      480
ttctacccgg gagctgtgac agtggcctgg aaggcagatg gcagccccgt caaggcggga
                                                                      540
gtggagacca ccaaacctc caaacagagc aacaacaagt acgcggccag cagctacctg
                                                                      600
agectgaege eegageagtg gaagteeeac agaagetaca getgeeaggt eaegeatgaa
                                                                      660
gggagcaccg tggagaagac agtggcccct acagaatgtt ca
                                                                      702
<210> SEQ ID NO 218
<211> LENGTH: 234
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 218
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp
Leu Arg Gly Ala Arg Cys Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser
Val Ser Pro Gly Gln Thr Ala Ser Leu Thr Cys Ser Gly Asp Lys Leu
Gly Asp Arg Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro
Val Leu Val Ile Tyr Gln Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu
Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser
Gly Thr Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp
```

-continued	
100 105 110	
Ser Ser Thr Ala Ser Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu 115 120 125	
Gly Gln Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser 130 135 140	
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 145 150 155 160	
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro 165 170 175	
Val Lys Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn 180 185 190	
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys 195 200 205	
Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 210 215 220	
Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 225 230	
<210> SEQ ID NO 219 <211> LENGTH: 702 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 219	
atggaaaccc cagcgcagct tetetteete etgetaetet ggeteecaga taccaecgga	60
gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc	120
ctctcctgca gggccagtca gagtgttagc agcaactact tagcctggta ccagcagaaa	180
cctggccagg ctcccaggct cctcatctat ggtgcatcca gcagggccac tggcatccca	240
gacaggttca gtggcagtgg gtctgggaca gacttcactc tcatcatcag cagactggag	300
cctgaagatt ttgtagtgta ttactgtcag cagtatggta gctcactcac tttcggcgga	360
gggaccaagg tggagatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca	420
tetgatgage agttgaaate tggaactgee tetgttgtgt geetgetgaa taaettetat	480
cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag	540
gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg	600
ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc	660
ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gt	702
<210> SEQ ID NO 220 <211> LENGTH: 234 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 220	
Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro 1 5 10 15	
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser	

Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser 35 40 45

Val Ser Ser Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala

-continued	
50 55 60	
Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro 65 70 75 80	
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ile Ile 85 90 95	
Ser Arg Leu Glu Pro Glu Asp Phe Val Val Tyr Tyr Cys Gln Gln Tyr 100 105 110	
Gly Ser Ser Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg 115 120 125	
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140	
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160	
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175	
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 190	
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205	
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220	
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230	
<210> SEQ ID NO 221 <211> LENGTH: 1401 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 221	
atggactgga cctggagcat ccttttcttg gtggcagcag caacaggtgc ccactcccag	60
gttcagctgg tgcagtctgg agatgaggtg aagaagcctg gggcctcagt gaaggtctcc	120
tgcaaggctt ctggttacac ctttatcaag tatggaatca gttgggtgcg acaggcccct	180
ggacaagggc ttgagtggat gggatggatc ggcgctttca atggtaacac agactatgca	240
cggaacctcc aggccagagt caccatgacc acagacacat ccacgagcac agcctacatg	300
gagetgagga geetgagate tgaegacaeg geegtatatt aetgtgegag agagggetgg	360
aacgacgact acttctgcgg tttggacgtc tggggccaag ggaccacggt caccgtctcc	420
teagecteca ecaagggee ateggtette eccetggege ectgetecag gageacetee	480
gagageacag eggeeetggg etgeetggte aaggaetaet teeeegaace ggtgaeggtg	540
togtggaact caggogotot gaccagoggo gtgcacacot toccagotgt cotacagtoo	600
traggartet acteretrag ragegtggtg accgtgeret cragraactt rggracerag	660
acctacacct gcaacgtaga tcacaagccc agcaacacca aggtggacaa gacagttgag	720
cgcaaatgtt gtgtcgagtg cccaccgtgc ccagcaccac ctgtggcagg accgtcagtc	780
ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcacg	840
tgcgtggtgg tggacgtgag ccacgaagac cccgaggtcc agttcaactg gtacgtggac	900
ggcgtggagg tgcataatgc caagacaaag ccacgggagg agcagttcaa cagcacgttc	960

cgtgtggtca gcgtcctcac cgttgtgcac caggactggc tgaacggcaa ggagtacaag 1020

tgcaaggtct ccaacaa	agg cctcccagcc	cccatcgaga	aaaccatctc caaaacca	aaa 1080
gggcagcccc gagaacc	aca ggtgtacacc	ctgcccccat	cccgggagga gatgacca	aag 1140
aaccaggtca gcctgac	ctg cctggtcaaa q	ggcttctacc	ccagcgacat cgccgtgg	gag 1200
tgggagagca atgggca	gcc ggagaacaac	tacaagacca	cacctcccat gctggact	cc 1260
gacggctcct tcttcct	cta cagcaagctc	accgtggaca	agagcaggtg gcagcagg	ggg 1320
aacgtcttct catgctc	cgt gatgcatgag	gctctgcaca	accactacac gcagaaga	agc 1380
ctctccctgt ctccggg	taa a			1401
<210> SEQ ID NO 22: <211> LENGTH: 467 <212> TYPE: PRT <213> ORGANISM: Hot	mo sapiens			
<400> SEQUENCE: 22				
Met Asp Trp Thr Tr 1 5	p Ser Ile Leu Pl	he Leu Val . 10	Ala Ala Ala Thr Gly 15	?
Ala His Ser Gln Va	l Gln Leu Val G	-	Asp Glu Val Lys Lys 30	3
Pro Gly Ala Ser Va	l Lys Val Ser C	ys Lys Ala	Ser Gly Tyr Thr Phe 45	e
Ile Lys Tyr Gly Ile 50	e Ser Trp Val A 55	-	Pro Gly Gln Gly Leu 60	ı
Glu Trp Met Gly Tr 65	p Ile Gly Ala P 70	he Asn Gly . 75	Asn Thr Asp Tyr Ala 80	a
Arg Asn Leu Gln Al	a Arg Val Thr M	et Thr Thr . 90	Asp Thr Ser Thr Sei 95	r
Thr Ala Tyr Met Gl	_	eu Arg Ser . 05	Asp Asp Thr Ala Val	l
Tyr Tyr Cys Ala Ar	g Glu Gly Trp A	an Aap Aap	Tyr Phe Cys Gly Let 125	1
Asp Val Trp Gly Gl	n Gly Thr Thr V		Ser Ser Ala Ser Thi 140	r
Lys Gly Pro Ser Va	l Phe Pro Leu A	la Pro Cys 155	Ser Arg Ser Thr Se 160	
Glu Ser Thr Ala Al		eu Val Lys . 170	Asp Tyr Phe Pro Glu 175	1
Pro Val Thr Val Se		ly Ala Leu 85	Thr Ser Gly Val His	3
Thr Phe Pro Ala Va	l Leu Gln Ser Se 200	er Gly Leu	Tyr Ser Leu Ser Sei 205	r
Val Val Thr Val Pro	o Ser Ser Asn Pl 215	-	Gln Thr Tyr Thr Cys 220	3
Asn Val Asp His Ly: 225	s Pro Ser Asn T 230	hr Lys Val . 235	Asp Lys Thr Val Glu 240	
Arg Lys Cys Cys Va		ro Cys Pro . 250	Ala Pro Pro Val Ala 255	a
Gly Pro Ser Val Pho		ro Lys Pro 65	Lys Asp Thr Leu Met 270	=
Ile Ser Arg Thr Pro	o Glu Val Thr C	ys Val Val	Val Asp Val Ser His 285	5

Glu	Asp 290	Pro	Glu	Val	Gln	Phe 295	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	
His 305	Asn	Ala	Lys	Thr	Lys 310	Pro	Arg	Glu	Glu	Gln 315	Phe	Asn	Ser	Thr	Phe 320	
Arg	Val	Val	Ser	Val 325	Leu	Thr	Val	Val	His 330	Gln	Asp	Trp	Leu	Asn 335	Gly	
Lys	Glu	Tyr	Lys 340	CAa	Lys	Val	Ser	Asn 345	Lys	Gly	Leu	Pro	Ala 350	Pro	Ile	
Glu	Lys	Thr 355	Ile	Ser	Lys	Thr	J60 Lys	Gly	Gln	Pro	Arg	Glu 365	Pro	Gln	Val	
Tyr	Thr 370	Leu	Pro	Pro	Ser	Arg 375	Glu	Glu	Met	Thr	380 Tàa	Asn	Gln	Val	Ser	
Leu 385	Thr	Cys	Leu	Val	390 Lys	Gly	Phe	Tyr	Pro	Ser 395	Asp	Ile	Ala	Val	Glu 400	
Trp	Glu	Ser	Asn	Gly 405	Gln	Pro	Glu	Asn	Asn 410	Tyr	Lys	Thr	Thr	Pro 415	Pro	
Met	Leu	Asp	Ser 420	Asp	Gly	Ser	Phe	Phe 425	Leu	Tyr	Ser	Lys	Leu 430	Thr	Val	
Asp	Lys	Ser 435	Arg	Trp	Gln	Gln	Gly 440	Asn	Val	Phe	Ser	Cys 445	Ser	Val	Met	
His	Glu 450	Ala	Leu	His	Asn	His 455	Tyr	Thr	Gln	Lys	Ser 460	Leu	Ser	Leu	Ser	
Pro 465	Gly	Lys														
<210> SEQ ID NO 223 <211> LENGTH: 318 <212> TYPE: DNA																
<213	3 > OF	RGANI	SM:	Homo	sa <u>r</u>	piens	3									
		EQUE														
	-	_				_	_			_	_	_	_		atcacc	60
_															ggccag	120
	_					_						_			atggat	240
	-					_						_		-	ggaggg	300
		ga o														318
<211 <212	-> LE 2> T	EQ II ENGTH (PE: RGAN)	H: 10 PRT	06	sar	piens	3									
< 400)> SI	EQUE1	ICE :	224												
Tyr 1	Glu	Leu	Thr	Gln 5	Pro	Pro	Ser	Val	Ser 10	Val	Ser	Pro	Gly	Gln 15	Thr	
Ala	Thr	Ile	Thr 20	CÀa	Ser	Gly	Asp	Lув 25	Leu	Gly	Glu	Arg	Tyr 30	Ala	Ser	
Trp	Tyr	Gln 35	Gln	Arg	Pro	Gly	Gln 40	Ser	Pro	Val	Leu	Val 45	Ile	Tyr	Gln	
Asp	Ile 50	ГЛа	Arg	Pro	Ser	Gly 55	Ile	Pro	Glu	Arg	Phe 60	Ser	Gly	Ser	Asn	

```
Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp
                   70
Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
Phe Gly Gly Thr Lys Leu Thr Val Leu
           100
<210> SEQ ID NO 225
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 225
Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Ser
<210> SEQ ID NO 226
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 226
Gln Asp Ile Lys Arg Pro Ser
<210> SEQ ID NO 227
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 227
Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
               5
<210> SEQ ID NO 228
<211> LENGTH: 702
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 228
atggacatga gggtgcccgc tcagctcctg gggctcctgc tgctgtggct gagaggtgcc
                                                                      60
agatgttatg agctgactca gccaccctca gtgtccgtgt ccccaggaca gacagccacc
                                                                     120
atcacctgct ctggagataa attgggggaa agatatgcgt cttggtatca gcagaggcca
                                                                     180
ggccagtccc ctgtactggt catctatcaa gatatcaagc ggccctcagg gatccctgag
                                                                     240
cgattctctg gctccaactc tgggaacaca gccactctga ccatcagegg gacccaggct
atggatgagg ctgactattt ctgtcaggcg tggtacagca gcaccaatgt gcttttcggc
ggagggacca agctgaccgt cctaggtcag cccaaggctg cccctcggt cactctgttc
ccgccctcct ctgaggagct tcaagccaac aaggccacac tggtgtgtct cataagtgac
ttctacccgg gagccgtgac agtggcctgg aaggcagata gcagccccgt caaggcggga
gtggagacca ccacacctc caaacaaagc aacaacaagt acgcggccag cagctatctg
agcctgacgc ctgagcagtg gaagtcccac agaagctaca gctgccaggt cacgcatgaa
qqqaqcaccq tqqaqaaqac aqtqqcccct acaqaatqtt ca
```

<210> SEQ														
<211> LEN <212> TYP		34												
<213> ORG		Homo	sap	iens	3									
<400> SEQ	UENCE:	229												
Met Asp M 1	et Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp	
Leu Arg G	ly Ala 20	Arg	Cys	Tyr	Glu	Leu 25	Thr	Gln	Pro	Pro	Ser 30	Val	Ser	
Val Ser P 3	_	Gln	Thr		Thr 40	Ile	Thr	Cys	Ser	Gly 45	Asp	Lys	Leu	
Gly Glu A 50	rg Tyr	Ala		Trp 55	Tyr	Gln	Gln	Arg	Pro 60	Gly	Gln	Ser	Pro	
Val Leu V 65	al Ile		Gln 70	Asp	Ile	Lys	Arg	Pro 75	Ser	Gly	Ile	Pro	Glu 80	
Arg Phe S	er Gly	Ser.	Asn	Ser	Gly	Asn	Thr 90	Ala	Thr	Leu	Thr	Ile 95	Ser	
Gly Thr G	ln Ala 100	Met .	Asp	Glu	Ala	Asp 105	Tyr	Phe	Cys	Gln	Ala 110	Trp	Tyr	
Ser Ser T	hr Asn 15	Val	Leu	Phe	Gly 120	Gly	Gly	Thr	Lys	Leu 125	Thr	Val	Leu	
Gly Gln P 130	ro Lys	Ala .		Pro 135	Ser	Val	Thr	Leu	Phe 140	Pro	Pro	Ser	Ser	
Glu Glu L 145	eu Gln		Asn 150	Lys	Ala	Thr	Leu	Val 155	Cys	Leu	Ile	Ser	Asp 160	
Phe Tyr P	ro Gly	Ala 165	Val	Thr	Val	Ala	Trp 170	Lys	Ala	Asp	Ser	Ser 175	Pro	
Val Lys A	la Gly 180	Val	Glu	Thr	Thr	Thr 185	Pro	Ser	Lys	Gln	Ser 190	Asn	Asn	
Lys Tyr A 1	la Ala 95	Ser	Ser	Tyr	Leu 200	Ser	Leu	Thr	Pro	Glu 205	Gln	Trp	Lys	
Ser His A 210	rg Ser	Tyr		Cys 215	Gln	Val	Thr	His	Glu 220	Gly	Ser	Thr	Val	
Glu Lys T 225	hr Val		Pro 230	Thr	Glu	Сла	Ser							
<210 > SEQ <211 > LEN <212 > TYP <213 > ORG	GTH: 69 E: DNA ANISM:	96 Homo	sap	oiens	3									
<400> SEQ														_
atggcatgg tatgagctg														6 12
tgctctgga														18
teceetgtg														24
tetggetee														30
gaggetgae														36
accaaggtc														42
tectetgag														48
	-	_					-	-	-	-	-	-		

coggagacty tyacactogs ctogaaagca atagsacqcc coctaaagc gagacty cotaagcty gagacty decaaaca cotcaaaca cascacaaaca aagtacgacg cagacaacaca cotsaagcac cocaaagaac tacagctgac aggacacaca cagacgcacacacacacacacacac							
acgoccgage agtagaagtc ccacagaag tacagotgcc aggicacgas tgaaggage 660 accgtggaga agacagtggc ccctacagas tgttca 696 <210> SEQ ID NO 231 -211> LENDTH: 222 -212> TYPE: DRT -211> ORGANISH: Homo papiene -4400> SEQUENCE: 231 Moet Ala Trp He Pro Leu Phe Leu Gly Val Leu Ala Tyr Cyo Thr Gly 15 Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ala Ser Tyr Glu Leu Thr Cyo Ser Gly Amp Lyo Leu Gly Amp 15 Arg Tyr Ala Ser Trp Tyr Gln Gln Lup Pro Gly Gln Ser Pro Val Leu 50 -85 Ser Gly Ser Amn Ser Gly Amn Thr Ala Thr Leu Thr 11e Ser Gly Thr 50 Ser Gly Ser Amn Ser Gly Amn Thr Ala Thr Leu Thr 11e Ser Gly Thr 50 Ser Gly Ser Amn Ser Gly Amn Thr Ala Thr Leu Thr 11e Ser Gly Thr 50 Cln Ala Met Amp Glu Ala Amp Tyr Tyr Cyo Gln Ala Trp Amp Ser Ser 110 Thr Ala Cyo Val Phe Gly Thr Gly Thr Lyo Val Thr 15e 110 Thr Ala Cyo Val Phe Gly Thr Leu Phe Pro Pro Ser Ser Glu Glu 135 Pro Lyo Ala Amn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 135 Pro Lyo Ala Amn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 135 Pro Gly Ala Val Thr Val Ala Trp Lyo Ala Amp Gly Ser Pro Val Lyo 16e 165 165 165 166 175 Ala Gly Val Glu Thr Thr Lyo Pro Ser Lyo Gln Ser Amn Amn Lyo Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lyo Ser His 195 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lyo Ser His 200 Arg Ser Tyr Ser Cyo Gln Val Thr His Glu Gly Ser Thr Val Glu Lyo 210 210 2210 2220 223 226 226 227 226 227 228 229 229 229 229 229 229 220 229 229 229	ccgggagctg tgad	agtggc ctg	gaaggca gat	ggcagcc cc	cgtcaaggo	gggagtggag	540
accytgpaga agacagtggc ccctacagaa tyttca 696 2100 SEC ID NO 231 -2115 IDENOTH 223 -2212 TYPE: PRIT -2212 ORGANISM: Homo espiens -2400 SEQUENCE: 231 Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 1	accaccaaac ccto	caaaca gag	caacaac aag	tacgegg ee	cagcagcta	cctgagcctg	600
210> SEQ ID NO 231 211> LENDTH: 232 212> TYPE: PRT 212> ORGANISM: Homo sapiens 2400> SEQUENCE: 231 Met Ala Trp 11e Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 15 Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser 20 Pro Gly Gln Thr Ala Ser Leu Thr Cys Ser Gly Asp Lys Leu Gly Asp 35 Arg Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Val Leu 50 Val 11e Tyr Gln Asp Ser Lys Arg Pro Ser Gly He Pro Glu Arg Phe 65 For Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr 11e Ser Gly Thr 85 Gln Ala Net Asp Glu Ala Asp Tyr Tyr Cyc Gln Ala Trp Asp Ser Ser 100 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 120 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu 11e Ser Asp Phe Tyr 145 Ala Gly Val Glu Thr Tr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 195 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 Thr Val Ala Pro Thr Clu Cys Ser 2210 SEQ ENDTH: 1398 2210 SEQ ID NO 212 2312 SERGUSKS: Homo sapiens 4400 SEQUENCE: 232 atggagttig ggotgagotig ggttttectc gitgetettt taasgaggtt coagtgtcag 60 gtgcagotig tiggagtctig ggtttcetc gitgetettt taasgaggtc caggetcca 180	acgcccgagc agt	ggaagte eea	cagaage tac	agctgcc ag	ggtcacgca	ı tgaagggagc	660
<pre>*211> LEMONTH: 232 *211> TOPER: PRT *211> ORGANISM: Homo mapleme *211> ORGANISM: Homo mapleme *211> TOPER: PRT *211> TOPER: PRT *211> ORGANISM: Homo mapleme *212> TOPER: PRT *211> TOPER: TOPER *211> TOPER: PRT *21</pre>	accgtggaga agad	agtggc ccc	tacagaa tgt	tca			696
Met Ala Trp 11e Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 1	<211> LENGTH: 2 <212> TYPE: PR	232 Г	.ens				
Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Val Ser Tyr Glu Gly Gln Thr Ala Ser Leu Thr Cys Ser Gly Asp Lys Leu Gly Asp A5 Sor Tyr Ya Gln Asp Ser Lys Arg Pro Ser Gly Gln Ser Pro Val Leu Sor So So So Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Ser Gly Asn Thr Ala Thr Lys Val Thr Val Leu Gly Gln Lys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln Lys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln Lys Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Lin Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Life Ser Asn Ser Gly Asn Thr Lys Val Thr Val Leu Gly Gln Lys Life Ser Asn Pro Thr Val Thr Lys Val Thr Val Lys Thr Lys Thr Lys Ala Ser Ser Glu Glu Lin Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Life Ser Tyr Leu Ser Leu Thr Pro Glu Gln Thr Lys Ser His 200 Ala Ash Pro Thr Glu Cys Ser 220 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 220 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 221 LENKTH: 1398 All Ala Pro Thr Glu Cys Ser 222 Arggagtting ggetgagting ggetgagting getcageting actgagtice cagigtica Geggetice Gggagtice Ggagatice Ctggatica actgagatic actgagatic actgagatic actgagtice Ctggatica Ctggatica Ctggatica actgagatic actgagatic actgagatic Ctggatica Ctggatica Ctggatica actgagatic actgagatic actgagatic Ctggatica Ctggat	<400> SEQUENCE	: 231					
Pro Gly Ala Val Thr Val Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 150 Gly Ala Val Thr Val Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 150 Gly Ala Val Thr Val Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 150 Gly Ala Thr Thr Lys Pro Gly Gln Ser Pro Val Leu Gly Gln Lys Der Gly Asp Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe 80 Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr 95 Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser 110 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 Val Phe Gly Thr Val Into Val Leu Gly Gln 120 Thr Val Into Val Val Cys Leu Ile Ser Asp Phe Tyr 140 Gly Asn Thr Val Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Thr Gly Ala Val Thr Val Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Thr Ala Ser Ser Tyr Leu Ser Lys Gln Ser Asn Asn Lys Tyr 180 Thr 180 Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Thr 180 Thr Thr Lys Pro Glu Glu Gln Trp Lys Ser His 200 Thr Pro Glu Gln Trp Lys Ser His 200 Thr Val Ala Pro Thr Glu Cys Ser 225 Thr Val Ala Pro Thr Glu Cys Ser 225 Thr Val Ala Pro Thr Glu Cys Ser 225 Call D NO 232 Call Lemoth: 1398 Call Ser Dokkanism: Homo sapiens Callo Nockanism: Homo sapiens Callo Secuence: 232 ataggagttg gagagtedg gagagtedg gagagtedg gagagtedg gagagtedg gagagtedg gagagtedg cagagtedg cagagtedg cagagtedg cagagtedg cagagtedg cagagtedgagtag cataggagtag cagagtedg cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagtedgagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagted cagagtedgagte			_		la Tyr Cy	_	
35		r Tyr Glu L		Pro Pro Se			
Val Ile Tyr Gln Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe 65 Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr 95 Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser 100 Thr Ala Cys Val Phe Gly Thr Gly Thr Leu Phe Pro Pro Ser Ser Glu Glu 115 Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 130 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 175 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 210 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 220 Thr Val Ala Pro Thr Glu Cys Ser 221 **Z210** SEQ ID NO 232 **Z211** LEUKOTH: 1398 **Z212** TYPE: DNA **Z213** ORGANISM: Homo sapiens **400> SEQUENCE: 232 **atggagettg tggageteg gggaggegtg stecageteg ggaggtecet gagactece		r Ala Ser L		Ser Gly As		eu Gly Asp	
Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr 95 Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser 100 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 125 Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Ser Ser Glu Glu 135 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 175 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 220 Thr Val Ala Pro Thr Glu Cys Ser 221 Thr Val Ala Pro Thr Glu Cys Ser 222 <211- Lenoth: 1398 <212- Type: DNA <212- Type: DNA<	-		-	-		o Val Leu	
90 95 Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Asp Ser Ser 110 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 115 Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 130 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 155 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 215 Thr Val Ala Pro Thr Glu Cys Ser 225			ys Arg Pro		le Pro G	_	
Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 Thr Ala Cys Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu Gly Gln 115 Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 130 Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 145 Fro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 165 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 Thr Val Ala Pro Thr Glu Cys Ser 225 <a hr<="" td=""><td>Ser Gly Ser Ası</td><td></td><td></td><td></td><td>nr Ile Se</td><td></td><td></td>	Ser Gly Ser Ası				nr Ile Se		
Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser Glu				Cys Gln Al	_	-	
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 160 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 175 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 205 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 Thr Val Ala Pro Thr Glu Cys Ser 230 <pre></pre>	115	_	120		125	-	
150 155 160 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro Val Lys 175 Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly 220 Thr Val Ala Pro Thr Glu Cys Ser 220 **C210> SEQ ID NO 232	130	1	.35	14	10		
Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 215 Thr Val Ala Pro Thr Glu Cys Ser 225 <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre></pre></pre></pre></pre></pre>	145	150		155		160	
Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 200 Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 Thr Val Ala Pro Thr Glu Cys Ser 225 Callo No 232 Callo Ennoth: 1398 Callo Type: DNA Callo ORGANISM: Homo sapiens C400> SEQUENCE: 232 atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag dggcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc tgtgcagctg ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcaa 180	-	165		170		175	
Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 Thr Val Ala Pro Thr Glu Cys Ser 225 SEQ ID NO 232 <211> LENGTH: 1398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <4400> SEQUENCE: 232 atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180	180)	185		19	0	
Thr Val Ala Pro Thr Glu Cys Ser 225	195	-	200		205		
225 230 <210> SEQ ID NO 232 <211> LENGTH: 1398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 232 atggagtttg ggctgagctg ggttttcctc gttgctctt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180	210	2	:15			r Gin nàs	
<pre><211> LENGTH: 1398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 232 atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180</pre>			.,5 202				
atggagtttg ggctgagctg ggttttcctc gttgctctt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180	<211> LENGTH: 3 <212> TYPE: DNA	1398 1	.ens				
gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180	<400> SEQUENCE	: 232					
tgtgcagcgt ctggattcac cctcagtagc tatggcatgc actgggtccg ccaggctcca 180	atggagtttg ggct	gagetg ggt	tttcctc gtt	gctcttt ta	aagaggtgt	ccagtgtcag	60
	gtgcagctgg tgga	agtetgg ggg	aggegtg gte	cageetg gg	gaggteeet	gagactetee	120
ggcaaggggc tggagtgggt ggcagttata tggtatgatg aaagtaataa atactatgca 240	tgtgcagcgt ctg	gattcac cct	cagtage tate	ggcatgc ac	etgggteeg	g ccaggeteca	180
	ggcaaggggc tgga	agtgggt ggc	agttata tgg	tatgatg aa	agtaataa	atactatgca	240

gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gttgaatct	g 300
caaatgaaca gcctgagagc cgaggacacg gctttgtatt actgtgcgag agccggtat	a 360
gcagcagccc ttgatgcttt tgatatctgg ggccaaggga caatggtcac cgtctcttc	a 420
gcetccacca agggcccatc ggtetteccc ctggcgccct gctccaggag cacctccga	g 480
agcacagegg ecetgggetg cetggteaag gactaettee eegaaceggt gaeggtgte	g 540
tggaactcag gcgctctgac cagcggcgtg cacaccttcc cagctgtcct acagtcctc	a 600
ggactotact cootcagoag ogtggtgaco gtgccotoca gcaacttogg caccoagac	c 660
tacacctgca acgtagatca caagcccagc aacaccaagg tggacaagac agttgagcg	c 720
aaatgttgtg tegagtgeee aeegtgeeea geaceacetg tggeaggaee gteagtette	c 780
ctetteccee caaaacecaa ggacacecte atgateteee ggaceeetga ggteaegtge	c 840
gtggtggtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtggacgg	c 900
gtggaggtgc ataatgccaa gacaaagcca cgggaggagc agttcaacag cacgttccg	t 960
gtggtcagcg tcctcaccgt tgtgcaccag gactggctga acggcaagga gtacaagtg	c 1020
aaggteteea acaaaggeet eecageeeee ategagaaaa eeateteeaa aaccaaagg	g 1080
cagccccgag aaccacaggt gtacaccctg cccccatccc gggaggagat gaccaagaa	c 1140
caggicagee tgacetgeet ggicaaagge tietaeeeea gegacatege egiggagig	g 1200
gagagcaatg ggcagccgga gaacaactac aagaccacac ctcccatgct ggactccga	c 1260
ggctccttct tcctctacag caagctcacc gtggacaaga gcaggtggca gcaggggaa	c 1320
gtetteteat geteegtgat geatgagget etgeacaace actacaegea gaagageet	c 1380
tecetgtete egggtaaa	1398
<210> SEQ ID NO 233 <211> LENGTH: 466 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 233 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arq Gly	
1 5 10 15	
Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln 20 25 30	

Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 145 150 155 160	
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 165 170 175	
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 180 185 190	
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 195 200 205	
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 210 215 220	
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 225 230 235 240	
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 245 250 255	
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 260 265 270	
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 275 280 285	
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 290 295 300	
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 305 310 315 320	
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 325 330 335	
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 340 345 350	
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 355 360 365	
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 370 375 380	
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 385 390 395 400	
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 405 410 415	
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 420 425 430	
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 435 440 445	
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 450 455 460	
Gly Lys 465	
<210> SEQ ID NO 234 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 234	
tatgagetga eteageeace eteagtgtee gtgteeecag gacagacage caccateace	
tgctctggag ataaattggg ggaaagatat gcgtcttggt atcagcagag gccaggccag	
teccetgtae tggteateta teaagatage aageggeeet eagggateee tgagegatte	

```
tctggctcca actctgggaa cacagccact ctgaccatca gcgggaccca ggctatggat
                                                                         240
gaggetgaet atttetgtea ggegtggtae ageageacea atgtgetttt eggeggaggg
                                                                         300
accaagctga ccgtccta
                                                                         318
<210> SEQ ID NO 235
<211> LENGTH: 106
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 235
Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln Thr
Ala Thr Ile Thr Cys Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Ser
 \hbox{Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Val Leu Val Ile Tyr Gln } \\
Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn
Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp
Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
<210> SEQ ID NO 236
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 236
Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Ser
<210> SEQ ID NO 237
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 237
Gln Asp Ser Lys Arg Pro Ser
<210> SEQ ID NO 238
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 238
Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu
<210> SEQ ID NO 239
<211> LENGTH: 702
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 239
```

atgga	acat	gag	gggtg	gadag	ge to	cagct	ccto	9 999	getec	etge	tgct	gtg	gct	gagag	gtgcc	6	0
agato	gtta	ıtg a	agcto	gacto	a go	ccaco	cctca	gtg	gteeg	gtgt	ccc	cagga	aca q	gacag	gccacc	12	0
atcad	cctg	jet d	tgga	agata	aa at	tggg	gggaa	a aga	atato	gegt	ctt	ggtat	ca	gcaga	aggcca	18	0
ggcca	agto	ec c	etgta	ectgo	gt ca	atcta	atcaa	a gat	agca	aagc	ggc	cctca	agg (gatco	ctgag	24	0
cgatt	tctc	tg ç	getec	caact	c to	gggaa	acaca	gc.	cacto	tga	ccat	cago	gg (gacco	agget	30	0
atgga	atga	ıgg d	etgad	ctatt	t ct	gtca	aggcg	g tgg	gtaca	agca	gcad	ccaat	gt	gcttt	tegge	36	0
ggagg	ggac	ca a	agcto	gacco	gt co	ctago	gtcaç	gee	caago	gctg	ccc	ecte	ggt (cacto	etgttc	42	0
ccgc	cctc	ct o	etgag	ggago	et to	caago	ccaac	aaç	ggcca	acac	tggt	gtgt	ct (cataa	agtgac	48	0
ttcta	acco	gg g	gaged	gtga	ac aç	gtggd	cctg	g aag	ggcag	gata	gcaç	geee	gt (caago	geggga	54	0
gtgga	agac	ca d	ccaca	accct	c ca	aaaca	aaago	aac	caaca	agt	acgo	egge	cag (cagct	atctg	60	0
agcct	tgac	gc o	etgag	gcagt	g ga	aagto	cccac	aga	aagct	aca	gct	gccaç	ggt (cacgo	catgaa	66	0
gggag	gcac	cg t	ggag	gaaga	ac aç	gtggd	cccct	aca	agaat	gtt	ca					70	2
<210: <211: <212: <213: <400:	> LE > TY > OF	NGTH PE:	H: 23 PRT [SM:	4 Homo	sa <u>r</u>	oiens	3										
Met A	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp		
Leu A	Arg	Gly	Ala 20	Arg	Cys	Tyr	Glu	Leu 25	Thr	Gln	Pro	Pro	Ser 30	Val	Ser		
Val S	Ser	Pro 35	Gly	Gln	Thr	Ala	Thr 40	Ile	Thr	Cya	Ser	Gly 45	Asp	Lys	Leu		
Gly (Glu 50	Arg	Tyr	Ala	Ser	Trp 55	Tyr	Gln	Gln	Arg	Pro 60	Gly	Gln	Ser	Pro		
Val I 65	Leu	Val	Ile	Tyr	Gln 70	Asp	Ser	Lys	Arg	Pro 75	Ser	Gly	Ile	Pro	Glu 80		
Arg I	Phe	Ser	Gly	Ser 85	Asn	Ser	Gly	Asn	Thr 90	Ala	Thr	Leu	Thr	Ile 95	Ser		
Gly :	Thr	Gln	Ala 100	Met	Asp	Glu	Ala	Asp 105	Tyr	Phe	Cys	Gln	Ala 110	Trp	Tyr		
Ser S	Ser	Thr 115	Asn	Val	Leu	Phe	Gly 120	Gly	Gly	Thr	Lys	Leu 125	Thr	Val	Leu		
Gly (Gln 130	Pro	Lys	Ala	Ala	Pro 135	Ser	Val	Thr	Leu	Phe 140	Pro	Pro	Ser	Ser		
Glu (145	Glu	Leu	Gln	Ala	Asn 150	Lys	Ala	Thr	Leu	Val 155	Cys	Leu	Ile	Ser	Asp 160		
Phe 5	Tyr	Pro	Gly	Ala 165	Val	Thr	Val	Ala	Trp 170	Lys	Ala	Asp	Ser	Ser 175	Pro		
Val I	Lys	Ala	Gly 180	Val	Glu	Thr	Thr	Thr 185	Pro	Ser	Lys	Gln	Ser 190	Asn	Asn		
Lys :	Tyr	Ala 195	Ala	Ser	Ser	Tyr	Leu 200	Ser	Leu	Thr	Pro	Glu 205	Gln	Trp	Lys		

Glu Lys Thr Val Ala Pro Thr Glu Cys Ser

225 230 <210> SEQ ID NO 241 <211> LENGTH: 708 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 241 atggcctggt ctcctctct cctcactctc ctcgctcact gcacagggtc ctgggcccag 60 tctgtgttga cgcagccgcc ctcactgtct ggggccccag ggcagagggt caccatctcc 120 tgcactgggg gcagctccaa catcgggtca ggttttgcta tatactggta ccagcagctt ccaggaacag cccccaaact cctcatctat ggtgacaaca ttcggccctc aggggtccct gaccgattct ctggctccaa gtctggcacc tccgcctccc tggccatcac tgggctccag gctgaggatg aggctgatta ttactgccag tcctatgaca gcagcctgag tggttcggta ttcggcggag ggaccaagct gaccgtccta agtcagccca aggctgcccc ctcggtcact ctgttcccgc cctcctctga ggagcttcaa gccaacaagg ccacactggt gtgtctcata agtgacttct accogggage cgtgacagtg geetggaagg cagatageag ceeegteaag gcgggagtgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc tatctgagcc tgacgcctga gcagtggaag tcccacagaa gctacagctg ccaggtcacg catgaaggga gcaccgtgga gaagacagtg gcccctacag aatgttca <210> SEQ ID NO 242 <211> LENGTH: 236 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 242 Met Ala Trp Ser Pro Leu Leu Leu Thr Leu Leu Ala His Cys Thr Gly 10 Ser Trp Ala Gln Ser Val Leu Thr Gln Pro Pro Ser Leu Ser Gly Ala 2.0 25 Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Gly Ser Ser Asn Ile 40 Gly Ser Gly Phe Ala Ile Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Gly Asp Asn Ile Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu Ser Gly Ser Val Phe Gly Gly Gly Thr Lys Leu Thr 120 Val Leu Ser Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser 165

Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser

180 185 190		
Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln 195 200 205		
Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser		
210 215 220		
Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 225 230 235		
<210> SEQ ID NO 243 <211> LENGTH: 1329		
<pre><211> LENGTH: 1329 <212> TYPE: DNA <213> ORGANISM: Homo sapiens</pre>		
<213> ORGANISM: HOMO SAPIENS <400> SEQUENCE: 243		
	60	
caggiticage tggtgcagte tggagetgag gtgaagaage etggggeete agtgaaggte	120	
teetgeaagg ettetggtta cacetttace agetatggta teagetgggt gegacaggee		
cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatggtga aacaaacact	180	
gcacagaaac tecagggcag agteaceatg accacagaca catecaegag cacageetac	240	
atggagetga ggageetgag atetgaegae aeggeegtgt attaetgtge gagagaggaa	300	
ctaggggett ttgatatetg gggecaaggg acaatggtea eegtetette ageeteeace	360	
aagggeeeat eggtetteee eetggegeee tgeteeagga geaceteega gageaeageg	420	
geeetggget geetggteaa ggaetaette eeegaacegg tgaeggtgte gtggaactea	480	
ggcgctctga ccagcggcgt gcacaccttc ccagctgtcc tacagtcctc aggactctac	540	
teceteagea gegtggtgae egtgeeetee ageaactteg geacceagae etacacetge	600	
aacgtagatc acaagcccag caacaccaag gtggacaaga cagttgagcg caaatgttgt	660	
gtcgagtgcc caccgtgccc agcaccacct gtggcaggac cgtcagtctt cctcttcccc	720	
ccaaaaccca aggacaccct catgatetee eggacecetg aggteaegtg egtggtggtg	780	
gacgtgagcc acgaagaccc cgaggtccag ttcaactggt acgtggacgg cgtggaggtg	840	
cataatgcca agacaaagcc acgggaggag cagttcaaca gcacgttccg tgtggtcagc	900	
gtcctcaccg ttgtgcacca ggactggctg aacggcaagg agtacaagtg caaggtctcc	960	
aacaaaggcc tcccagcccc catcgagaaa accatctcca aaaccaaagg gcagccccga	1020	
gaaccacagg tgtacaccet geeeceatee egggaggaga tgaccaagaa eeaggteage	1080	
ctgacctgcc tggtcaaagg cttctacccc agcgacatcg ccgtggagtg ggagagcaat	1140	
gggcagccgg agaacaacta caagaccaca cctcccatgc tggactccga cggctccttc	1200	
tteetetaca geaageteae egtggacaag ageaggtgge ageaggggaa egtettetea	1260	
tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct	1320	
ccgggtaaa	1329	
<210> SEQ ID NO 244 <211> LENGTH: 443 <212> TYPE: PRT <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 244		
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala		

Ser	Val	Lys	Val 20	Ser	CÀa	ГÀа	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr
Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
Gly	Trp 50	Ile	Ser	Ala	Tyr	Asn 55	Gly	Glu	Thr	Asn	Thr 60	Ala	Gln	Lys	Leu
Gln 65	Gly	Arg	Val	Thr	Met 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Glu 100	Leu	Gly	Ala	Phe	Asp 105	Ile	Trp	Gly	Gln	Gly 110	Thr	Met
Val	Thr	Val 115	Ser	Ser	Ala	Ser	Thr 120	Lys	Gly	Pro	Ser	Val 125	Phe	Pro	Leu
Ala	Pro 130	Сув	Ser	Arg	Ser	Thr 135	Ser	Glu	Ser	Thr	Ala 140	Ala	Leu	Gly	Cys
Leu 145	Val	Lys	Asp	Tyr	Phe 150	Pro	Glu	Pro	Val	Thr 155	Val	Ser	Trp	Asn	Ser 160
Gly	Ala	Leu	Thr	Ser 165	Gly	Val	His	Thr	Phe 170	Pro	Ala	Val	Leu	Gln 175	Ser
Ser	Gly	Leu	Tyr 180	Ser	Leu	Ser	Ser	Val 185	Val	Thr	Val	Pro	Ser 190	Ser	Asn
Phe	Gly	Thr 195	Gln	Thr	Tyr	Thr	Cys 200	Asn	Val	Asp	His	Lys 205	Pro	Ser	Asn
Thr	Lys 210	Val	Asp	Lys	Thr	Val 215	Glu	Arg	Lys	Cys	Cys 220	Val	Glu	Cys	Pro
Pro 225	Cys	Pro	Ala	Pro	Pro 230	Val	Ala	Gly	Pro	Ser 235	Val	Phe	Leu	Phe	Pro 240
Pro	Lys	Pro	Lys	Asp 245	Thr	Leu	Met	Ile	Ser 250	Arg	Thr	Pro	Glu	Val 255	Thr
CÀa	Val	Val	Val 260	Asp	Val	Ser	His	Glu 265	Asp	Pro	Glu	Val	Gln 270	Phe	Asn
Trp	Tyr	Val 275	Asp	Gly	Val	Glu	Val 280	His	Asn	Ala	Lys	Thr 285	ГÀв	Pro	Arg
Glu	Glu 290	Gln	Phe	Asn	Ser	Thr 295	Phe	Arg	Val	Val	Ser 300	Val	Leu	Thr	Val
Val 305	His	Gln	Asp	Trp	Leu 310	Asn	Gly	Lys	Glu	Tyr 315	Lys	CAa	ГÀв	Val	Ser 320
Asn	Lys	Gly	Leu	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	ГЛа
Gly	Gln	Pro	Arg 340	Glu	Pro	Gln	Val	Tyr 345	Thr	Leu	Pro	Pro	Ser 350	Arg	Glu
Glu	Met	Thr 355	Lys	Asn	Gln	Val	Ser 360	Leu	Thr	Суз	Leu	Val 365	Lys	Gly	Phe
Tyr	Pro 370	Ser	Asp	Ile	Ala	Val 375	Glu	Trp	Glu	Ser	Asn 380	Gly	Gln	Pro	Glu
Asn 385	Asn	Tyr	Lys	Thr	Thr 390	Pro	Pro	Met	Leu	Asp 395	Ser	Asp	Gly	Ser	Phe 400
Phe	Leu	Tyr	Ser	Lys 405	Leu	Thr	Val	Asp	Lys 410	Ser	Arg	Trp	Gln	Gln 415	Gly
Asn	Val	Phe	Ser	Càa	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr

```
420
                               425
                                                   430
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
       435
                           440
<210> SEQ ID NO 245
<211> LENGTH: 318
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 245
tatgagetga eteageeece eteagtgtee gtgteeecag gacagacage cageateace
                                                                     60
120
teccetatae tggteateta teaagataee aageggeeet eagggateee tgagegatte
tctggctcca actctgggaa cacagccact ctgaccatca gcgggaccca ggctatggat
gaggctgact attactgtca ggcgtggtac agcagcacca atgtggtatt cggcggaggg
                                                                    300
accaagctga ccgtccta
                                                                    318
<210> SEQ ID NO 246
<211> LENGTH: 106
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 246
Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln Thr
Ala Ser Ile Thr Cys Ser Gly Asp Lys Met Gly Glu Arg Tyr Ala Ser 20 25 30
Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Ile Leu Val Ile Tyr Gln
Asp Thr Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn
                      55
Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp
                   70
Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val Val
Phe Gly Gly Thr Lys Leu Thr Val Leu
           100
<210> SEQ ID NO 247
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 247
Ser Gly Asp Lys Met Gly Glu Arg Tyr Ala Ser
              5
<210> SEQ ID NO 248
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 248
Gln Asp Thr Lys Arg Pro Ser
```

```
<210> SEO ID NO 249
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 249
Gln Ala Trp Tyr Ser Ser Thr Asn Val Val
<210> SEQ ID NO 250
<211> LENGTH: 702
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 250
atggacatga gggtgcccgc tcagctcctg gggctcctgc tgctgtggct gagaggtgcc
agatgttatg agctgactca gcccccctca gtgtccgtgt ccccaggaca gacagccagc
atcacctgtt ctggagataa aatgggggaa agatatgctt cctggtatca gcagaagcca
ggccagtccc ctatactggt catctatcaa gataccaagc ggccctcagg gatccctgag
cgattetetg getecaacte tgggaacaca gecaetetga ceatcagegg gacceagget
atggatgagg ctgactatta ctgtcaggcg tggtacagca gcaccaatgt ggtattcggc
ggagggacca agctgaccgt cctaggtcag cccaaggctg ccccctcggt cactctgttc
                                                                     420
ccgccctcct ctgaggagct tcaagccaac aaggccacac tggtgtgtct cataagtgac
                                                                     480
                                                                     540
ttctacccgg gagccgtgac agtggcctgg aaggcagata gcagccccgt caaggcggga
gtggagacca ccacacctc caaacaaagc aacaacaagt acgcggccag cagctatctg
                                                                     600
agectqacqc ctqaacaqtq qaaqtcccac aqaaqctaca qctqccaqqt cacqcatqaa
                                                                     660
qqqaqcaccq tqqaqaaqac aqtqqcccct acaqaatqtt ca
                                                                     702
<210> SEO ID NO 251
<211> LENGTH: 234
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 251
Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp
                                   10
Leu Arg Gly Ala Arg Cys Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser
                              25
Val Ser Pro Gly Gln Thr Ala Ser Ile Thr Cys Ser Gly Asp Lys Met
Gly Glu Arg Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro
Ile Leu Val Ile Tyr Gln Asp Thr Lys Arg Pro Ser Gly Ile Pro Glu
Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser
Gly Thr Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Tyr
Ser Ser Thr Asn Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
                           120
Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser
```

-continued		
130 135 140		
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 145 150 155 160		
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro 165 170 175		
Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn 180 185 190		
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys 195 200 205		
Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 210 215 220		
Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 225 230		
<210> SEQ ID NO 252 <211> LENGTH: 696 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 252		
atggcatgga tecetetett ceteggegte ettgettaet geacaggate egtggeetee	60	
tatgagetga eteageeace eteagtgtee gtgteeceag gacagacage caccateace	120	
tgctctggag ataaattggg ggaaagatat gcgtgttggt atcagcagag gccaggccag	180	
teccetgtae tggteateta teaagatate aageggeeet eagggateee tgagegatte	240	
tetggeteca actetgggaa cacagecact etgaceatea gegggaeeea ggetatggat	300	
gaggetgaet atttetgtea ggegtggtae ageageaeca atgtgetttt eggeggaggg	360	
accaagetga cegteetagg teageceaag getgeeeeet eggteactet gtteeegeee	420	
teetetgagg agetteaage caacaaggee acaetggtgt gteteataag tgaettetae	480	
ccgggagccg tgacagtggc ctggaaggca gatagcagcc ccgtcaaggc gggagtggag	540	
accaccacae cetecaaaca aagcaacaae aagtaegegg ceageageta tetgageetg	600	
acgeetgage agtggaagte ceacagaage tacagetgee aggteacgea tgaagggage	660	
accgtggaga agacagtggc ccctacagaa tgttca	696	
<210> SEQ ID NO 253 <211> LENGTH: 232 <212> TYPE: PRT <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 253		
Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 1 5 10 15		
Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser 20 25 30		
Pro Gly Gln Thr Ala Thr Ile Thr Cys Ser Gly Asp Lys Leu Gly Glu 35 40 45		
Arg Tyr Ala Cys Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Val Leu 50 55 60		
Val Ile Tyr Gln Asp Ile Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe 65 70 75 80		

Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr

-continued	
85 90 95	
Gln Ala Met Asp Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser 100 105 110	
Thr Asn Val Leu Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 115 120 125	
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 130 135 140	
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 145 150 155 160	
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 165 170 175	
Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 185 190	
Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 195 200 205	
Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 215 220	
Thr Val Ala Pro Thr Glu Cys Ser 225 230	
<210> SEQ ID NO 254 <211> LENGTH: 1398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 254	
atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctc	-
tgtgcagcgt ctggattcac cttcagtagc tatggcatgc actgggtccg ccaggctcc.	
ggcaaggggc tggagtgggt ggcagttata tggtatgctg aaagtaataa atactacgc	a 240
gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatct	g 300
caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcgag agcccagga	g 360
ggtatagccc ctgacgcttt tgatatctgg ggccaaggaa caatggtcac cgtctcttc	a 420
gcctccacca agggcccatc ggtcttcccc ctggcgccct gctccaggag cacctccga	g 480
agcacagogg cootgggotg cotggtcaag gactacttcc cogaacoggt gacggtgtog	
tggaactcag gegetetgac cageggegtg cacacettee cagetgteet acagteete	
ggactetact ccctcagcag cgtggtgacc gtgccctcca gcaacttcgg cacccagac	
tacacctgca acgtagatca caagcccagc aacaccaagg tggacaagac agttgagcg	
aaatgttgtg tcgagtgccc accgtgccca gcaccacctg tggcaggacc gtcagtctt	
ctettecece caaaacecaa ggacacecte atgatetece ggacecetga ggteaegtge	
gtggtggtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtggacgg	
gtggaggtgc ataatgccaa gacaaagcca cgggaggagc agttcaacag cacgttccg	
	. 1020

aaggteteea acaaaggeet eccageeeee ategagaaaa ecateteeaa aaccaaaggg 1080

cageccegag aaccacaggt gtacaccetg eccecatece gggaggagat gaccaagaac caggteagee tgacetgeet ggteaaagge ttetacecca gegacatege egtggagtgg

gagagcaatg ggcagccgga gaacaactac aagaccacac ctcccatgct ggactccgac	1260												
ggctccttct tcctctacag caagctcacc gtggacaaga gcaggtggca gcaggggaac	1320												
gtetteteat geteegtgat geatgagget etgeacaace actacaegea gaagageete 13													
tccctgtctc cgggtaaa	1398												
<210> SEQ ID NO 255 <211> LENGTH: 466 <212> TYPE: PRT <213> ORGANISM: Homo sapiens													
<400> SEQUENCE: 255													
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly 1 10 15													
Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln 20 25 30													
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45													
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 60													
Glu Trp Val Ala Val Ile Trp Tyr Ala Glu Ser Asn Lys Tyr Tyr Ala 65 70 75 80													
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95													
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110													
Tyr Tyr Cys Ala Arg Ala Gln Glu Gly Ile Ala Pro Asp Ala Phe Asp 115 120 125													
Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys 130 135 140													
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 145 150 155 160													
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 165 170 175													
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 180 185 190													
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 195 200 205													
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 210 215 220													
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 225 230 235 240													
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly 245 250 255													
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 260 265 270													
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 275 280 285													
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 290 295 300													
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 305 310 315 320													

Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 325 330 Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 340 345 Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 375 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 405 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 440 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> SEQ ID NO 256 <211> LENGTH: 696 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 256 atgqcatqqa tccctctctt cctcqqcqtc cttqcttact qcacaqqatc cqtqqcctcc 60 tatqaqctqa ctcaqccacc ctcaqtqtcc qtqtccccaq qacaqacaqc caccatcacc 120 180 teccetqtae tqqteateta teaaqataqe aaqeqqeeet caqqqatece tqaqeqatte 240 tetggeteca actetgggaa cacagecaet etgaceatea gegggaecea ggetatggat 300 gaggetgaet atttetgtea ggegtggtae ageageacea atgtgetttt eggeggaggg 360 accaagetga cegteetagg teageceaag getgeeeet eggteaetet gtteeegeee 420 tcctctgagg agcttcaagc caacaaggcc acactggtgt gtctcataag tgacttctac 480 ccgggagccg tgacagtggc ctggaaggca gatagcagcc ccgtcaaggc gggagtggag 540 600 accaccacac cctccaaaca aagcaacaac aagtacgcgg ccagcagcta tctgagcctg acgcctgagc agtggaagtc ccacagaagc tacagctgcc aggtcacgca tgaagggagc accgtggaga agacagtggc ccctacagaa tgttca 696 <210> SEQ ID NO 257 <211> LENGTH: 232 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 257 Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser 25

Pro Gly Gln Thr Ala Thr Ile Thr Cys Ser Gly Asp Lys Leu Gly Glu Arg Tyr Ala Cys Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Val Leu Val Ile Tyr Gln Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Met Asp Glu Ala Asp Tyr Phe Cys Gln Ala Trp Tyr Ser Ser Thr Asn Val Leu Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 155 Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 225 230 <210> SEQ ID NO 258 <211> LENGTH: 1398 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 258 atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag 60 gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc 120 tgtgcagcgt ctggattcac cttcagtagc tatggcatgc actgggtccg ccaggctcca 180 ggcaaggggc tggagtgggt ggcagttata tggtatgctg aaagtaataa atactacgca 240 gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctgtatctg 300 caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcgag agcccaggag 360 ggtatagccc ctgacgcttt tgatatctgg ggccaaggaa caatggtcac cgtctcttca 420 geetecacca agggeecate ggtettecee etggegeect getecaggag eaceteegag 480 agcacagogg cootgggotg cotggtoaag gactacttoo cogaacoggt gacggtgtog 540 tggaactcag gcgctctgac cagcggcgtg cacaccttcc cagctgtcct acagtcctca ggactetact ccctcagcag cgtggtgacc gtgccctcca gcaacttcgg cacccagacc tacacctgca acgtagatca caagcccagc aacaccaagg tggacaagac agttgagcgc aaatgttgtg tcgagtgccc accgtgccca gcaccacctg tggcaggacc gtcagtcttc ctetteecce caaaacccaa ggacaccete atgateteec ggacccetga ggtcacgtge 840

gtggtggt	gg	acgt	gagc	ca c	gaaga	acccc	gaq	ggtc	cagt	tcaa	actg	gta (egtg	gacggc	900
gtggaggt	gc (ataai	gcca	aa g	acaa	agcca	a cg	ggagg	gagc	agti	caa	cag (cacgt	teegt	960
gtggtcag	geg	tcct	cacco	gt t	gtgca	accaç	g gad	ctgg	ctga	acg	gcaa	gga	gtaca	aagtgc	1020
aaggtct	cca a	acaa	aggc	ct c	ccag	cccc	c ato	cgaga	aaaa	ccat	ctc	caa a	aacca	aaaggg	1080
cagecec	gag	aacca	acag	gt g	taca	ccctç	g cc	cccat	ccc	999	agga	gat q	gacca	aagaac	1140
caggtcaç	gee 1	tgac	ctgc	ct g	gtca	aaggo	c tto	ctaco	ccca	gcga	acat	ege (egtg	gagtgg	1200
gagagcaa	atg (ggca	geeg	ga ga	aacaa	actac	c aaq	gacca	acac	ctc	ccat	get	ggact	ccgac	1260
ggctcctt	ct	tcct	ctaca	ag ca	aagci	tcaco	gto	ggaca	aaga	gca	ggtg	gca (gcago	gggaac	1320
gtcttctc	cat o	gctc	cgtga	at g	catg	aggct	cto	gcaca	aacc	acta	acac	gca (gaaga	agcctc	1380
tccctgt	ctc (cgggt	caaa												1398
<210> SI <211> LI <212> TY <213> OI <400> SI	ENGTI PE: RGAN	H: 40 PRT ISM:	66 Homo	o saj	pien	3									
Met Glu 1	Phe	Gly	Leu 5	Ser	Trp	Val	Phe	Leu 10	Val	Ala	Leu	Leu	Arg 15	Gly	
Val Gln	Сув	Gln 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Val 30	Val	Gln	
Pro Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe	
Ser Ser 50	Tyr	Gly	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu	
Glu Trp 65	Val	Ala	Val	Ile 70	Trp	Tyr	Ala	Glu	Ser 75	Asn	Lys	Tyr	Tyr	Ala 80	
Asp Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn	
Thr Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val	
Tyr Tyr	Cys 115	Ala	Arg	Ala	Gln	Glu 120	Gly	Ile	Ala	Pro	Asp 125	Ala	Phe	Asp	
Ile Trp 130	Gly	Gln	Gly	Thr	Met 135	Val	Thr	Val	Ser	Ser 140	Ala	Ser	Thr	Lys	
Gly Pro 145	Ser	Val	Phe	Pro 150	Leu	Ala	Pro	CAa	Ser 155	Arg	Ser	Thr	Ser	Glu 160	
Ser Thr	Ala	Ala	Leu 165	Gly	CAa	Leu	Val	Lys 170	Asp	Tyr	Phe	Pro	Glu 175	Pro	
Val Thr	Val	Ser 180	Trp	Asn	Ser	Gly	Ala 185	Leu	Thr	Ser	Gly	Val 190	His	Thr	
Phe Pro	Ala 195	Val	Leu	Gln	Ser	Ser 200	Gly	Leu	Tyr	Ser	Leu 205	Ser	Ser	Val	
Val Thr 210	Val	Pro	Ser	Ser	Asn 215	Phe	Gly	Thr	Gln	Thr 220	Tyr	Thr	CAa	Asn	
Val Asp 225	His	Lys	Pro	Ser 230	Asn	Thr	Lys	Val	Asp 235	Lys	Thr	Val	Glu	Arg 240	
Lys Cys	CÀa	Val	Glu 245	CAa	Pro	Pro	Сла	Pro 250	Ala	Pro	Pro	Val	Ala 255	Gly	

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 260 265 270	
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 275 280 285	
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 290 295 300	
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg 305 310 315 320	
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 325 330 335	
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 340 345 350	
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 355 360 365	
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu	
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp	
385 390 395 400 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met	
405 410 415 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp	
420 425 430 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His	
435 440 445	
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 450 455 460	
Gly Lys 465	
<210> SEQ ID NO 260 <211> LENGTH: 705	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 260	
atggcctggg ctccactact tctcaccctc ctcgctcact gcacaggttc ttgggccaat	60
tttatgctga ctcagcccca ctctgtgtcg gagtctccgg ggaagacggt aaccatctcc	120
tgcaccegca gcagtggcag cattgccage tactatgtgc agtggtacca gcagcgcccg	180
ggcagttccc ccaccactgt gatctatgag gatagccaga gaccctctgg ggtccctgat cggttctctg gctccatcga cagctcctcc aactctgcct ccctcaccat ctctggactg	300
aagactgagg acgaggctga ctattattgt cagtettatg atagcagcaa tgtggtatte	360
ggcggaggga ccaagctgac cgtcctaggt cagcccaagg ctgcccctc ggtcactctg	420
ttcccgccct cctctgagga gcttcaagcc aacaaggcca cactggtgtg tctcataagt	480
gacttetace egggageegt gacagtggee tggaaggeag atageageee egteaaggeg	540
ggagtggaga ccaccacacc ctccaaacaa agcaacaaca agtacgcggc cagcagctat	600
ctgagcctga cgcctgagca gtggaagtcc cacagaagct acagctgcca ggtcacgcat	660
gaagggagca ccgtggagaa gacagtggcc cctacagaat gttca	705

<211> LENGTH: 235 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 261 Met Ala Trp Ala Pro Leu Leu Leu Thr Leu Leu Ala His Cys Thr Gly 10 Ser Trp Ala Asn Phe Met Leu Thr Gln Pro His Ser Val Ser Glu Ser 25 Pro Gly Lys Thr Val Thr Ile Ser Cys Thr Arg Ser Ser Gly Ser Ile Ala Ser Tyr Tyr Val Gln Trp Tyr Gln Gln Arg Pro Gly Ser Ser Pro Thr Thr Val Ile Tyr Glu Asp Ser Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Ile Asp Ser Ser Ser Asn Ser Ala Ser Leu Thr Ile Ser Gly Leu Lys Thr Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Asn Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn 185 Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp 200 Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr 215 Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 230 <210> SEQ ID NO 262 <211> LENGTH: 1404 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 262 atgtctgtct ccttcctcat cttcctgccc gtgctgggcc tcccatgggg tgtcctgtca caggtacagc tgcagcagtc aggtccagga ctggtgaagc cctcgcagac cctctcactc acctgtgcca tctccgggga cagtgtctct agcaacagtg ctgcttggaa ctggatcagg cagtececat egagaggeet tgagtggetg ggaaggacat actacaggte caagtggttt aatgattatg cagtatctgt gcaaagtcga ataaccatca acccagacac atccaagaac cagttctccc tgcagctgaa ctctgtgact cccgaggaca cggctgtgta ttactgtgca agagggattg tetteteeta egetatggae gtetggggee aagggaeeae ggteaeegte tectcaqeet ccaccaaqqq eccatcqqte tteccectqq eqecetqete caqqaqeace teegagagea cageggeeet gggetgeetg gteaaggaet actteeeega aceggtgaeg 540

gtgtcgtgga	actcaggcgc	tctgaccagc	ggcgtgcaca	ccttcccagc	tgtcctacag	600
teeteaggae	tctactccct	cagcagcgtg	gtgaccgtgc	cctccagcaa	cttcggcacc	660
cagacctaca	cctgcaacgt	agatcacaag	cccagcaaca	ccaaggtgga	caagacagtt	720
gagcgcaaat	gttgtgtcga	gtgcccaccg	tgcccagcac	cacctgtggc	aggaccgtca	780
gtetteetet	tccccccaaa	acccaaggac	accctcatga	teteceggae	ccctgaggtc	840
acgtgcgtgg	tggtggacgt	gagccacgaa	gaccccgagg	tccagttcaa	ctggtacgtg	900
gacggcgtgg	aggtgcataa	tgccaagaca	aagccacggg	aggagcagtt	caacagcacg	960
ttccgtgtgg	tcagcgtcct	caccgttgtg	caccaggact	ggctgaacgg	caaggagtac	1020
aagtgcaagg	tctccaacaa	aggeeteeca	gececcateg	agaaaaccat	ctccaaaacc	1080
aaagggcagc	cccgagaacc	acaggtgtac	accetgeece	cateceggga	ggagatgacc	1140
aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	accccagcga	catcgccgtg	1200
gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	ccacacctcc	catgctggac	1260
teegaegget	ccttcttcct	ctacagcaag	ctcaccgtgg	acaagagcag	gtggcagcag	1320
gggaacgtct	teteatgete	cgtgatgcat	gaggetetge	acaaccacta	cacgcagaag	1380
agcctctccc	tgtctccggg	taaa				1404
<210> SEO 3	ID NO 263					
TITO, DIG.	10 200					

<210> SEQ ID NO 263 <211> LENGTH: 468

<211> LENGTH: 468

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 263

Met Ser Val Ser Phe Leu Ile Phe Leu Pro Val Leu Gly Leu Pro Trp 1 $$ 15

Gly Val Leu Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val \$20\$

Lys Pro Ser Gln Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser 35 40 45

Val Ser Ser Asn Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Ser 50 55 60

Arg Gly Leu Glu Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Phe 65 70 75 80

Asn Asp Tyr Ala Val Ser Val Gln Ser Arg Ile Thr Ile Asn Pro Asp 85 90 95

Thr Ser Lys Asn Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu \$100\$

Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ile Val Phe Ser Tyr Ala

Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr 145 150 155 160

Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro\$165\$

Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val $180 \ \ 185 \ \ 190 \ \$

His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser

195

200

-continued

205

Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr	
210 215 220 Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val	
225 230 235 240	
Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val 245 250 255	
Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 260 265 270	
Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser 275 280 285	
His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 290 295 300	
290 295 300 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr	
305 310 315 320	
Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn 325 330 335	
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro 340 345 350	
Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln 355 360 365	
Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val	
370 375 380 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val	
385 390 395 400	
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 405 410 415	
Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 420 425 430	
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 435 440 445	
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu	
450 455 460 Ser Pro Gly Lys	
465	
<210> SEQ ID NO 264 <211> LENGTH: 696	
<pre><211> DENOTA: 696 <212> TYPE: DNA <213> ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 264	
atggcatgga tecetetett eeteggegte ettgettaet geacaggate egtggeetee 60	
tatgagetga eteageeece eteagtgtee gtgteeecag gacagacage cagcateace 120	
tgttctggag ataaaatggg ggaaagatat gcttgctggt atcagcagaa gccaggccag	
tecectatac tggtcateta teaagatace aageggeest cagggatees tgagegatte 240	
totggotoca actotgggaa cacagocact otgacoatoa gogggacoca ggotatggat 300 qaqqotqact attactqtoa qqoqtqqtac aqoaqoacoa atqtqqtatt oqqoqqaqqq 360	
gaggetgaet attactgtea ggegtggtae ageageacea atgtggtatt eggeggaggg 360 aceaagetga cegteetagg teageecaag getgeeceet eggteactet gtteeegeee 420	
teetetgagg agetteaage caacaaggee acactggtgt gteteataag tgaettetae 480	

cogggagcog tgacagtggo otggaaggoa gatagcagoo oogtcaaggo gggagtggag	540
accaccaca cotocaaaca aaqcaacaac aaqtacqcqq ccaqcaqcta totqaqcotq	600
acgcetgaac agtggaagte ccacagaage tacagetgee aggteaegea tgaagggage	660
accgtggaga agacagtggc ccctacagaa tgttca	696
<210> SEQ ID NO 265 <211> LENGTH: 232 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 265	
Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Ala Tyr Cys Thr Gly 1 5 10 15	
Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ser 20 25 30	
Pro Gly Gln Thr Ala Ser Ile Thr Cys Ser Gly Asp Lys Met Gly Glu 35 40 45	
Arg Tyr Ala Cys Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Ile Leu 50 55 60	
Val Ile Tyr Gln Asp Thr Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe 65 70 75 80	
Ser Gly Ser Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr 85 90 95	
Gln Ala Met Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Trp Tyr Ser Ser 100 105 110	
Thr Asn Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 115 120 125	
Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 130 135 140	
Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 145 150 155 160	
Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys 165 170 175	
Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 180 185 190	
Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 195 200 205	
Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 210 215 220	
Thr Val Ala Pro Thr Glu Cys Ser 225 230	
<210> SEQ ID NO 266 <211> LENGTH: 1398 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 266	
atggagtttg ggctgagctg ggttttcctc gttgctcttt taagaggtgt ccagtgtcag	60
gtgcagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct gagactctcc	120
tgtgcagcgt ctggattcac cttcagtaac tatggcatgc actgggtccg ccaggctcca	180

ggcaaggggc tggagtgggt ggcagttata tggtatgttg gaagtaataa atactatgca

-continued

240

33-4433333343-333- 33-43-44-4 -33-4-3-3 3443-44-44 4-4-	
gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac gctg	tatctg 300
caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcgag agcc	caggag 360
ggtatggccc ctgatgcttt tgatatctgg ggccaaggga caatggtcac cgtc	tottca 420
geetecacea agggeecate ggtetteece etggegeeet getecaggag eace	tccgag 480
agcacagegg ceetgggetg cetggteaag gactaettee eegaaceggt gaeg	gtgtcg 540
tggaactcag gcgctctgac cagcggcgtg cacaccttcc cagctgtcct acag	tcctca 600
ggactctact ccctcagcag cgtggtgacc gtgccctcca gcaacttcgg cacc	cagacc 660
tacacctgca acgtagatca caagcccagc aacaccaagg tggacaagac agtt	gagege 720
aaatgttgtg tegagtgeee accgtgeeea geaceaeetg tggeaggaee gteag	gtcttc 780
etetteecee caaaacecaa ggacaceete atgateteee ggaceeetga ggte	acgtgc 840
gtggtggtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtg	gacggc 900
gtggaggtgc ataatgccaa gacaaagcca cgggaggagc agttcaacag cacg	ttccgt 960
gtggtcagcg tecteacegt tgtgcaceag gaetggetga aeggcaagga gtac	aagtgc 1020
aaggteteea acaaaggeet eecageeeee ategagaaaa eeateteeaa aace	aaaggg 1080
cageceegag aaccacaggt gtacaceetg eccecateee gggaggagat gace	aagaac 1140
caggicagee tgacetgeet ggicaaagge tictaceeca gegacatege egig	gagtgg 1200
gagagcaatg ggcagccgga gaacaactac aagaccacac ctcccatgct ggac	tccgac 1260
ggeteettet teetetacag caageteace gtggacaaga geaggtggea geagg	gggaac 1320
gtetteteat geteegtgat geatgagget etgeacaace actaeaegea gaag	agcctc 1380
tccctgtctc cgggtaaa	1398
<pre><210> SEQ ID NO 267 <211> LENGTH: 466 <212> TYPE: PRT <213> ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 267	~ 1
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg 1 5 10 15	GIY
Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val 20 25 30	Gln
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr 35 40 45	Phe
Ser Asn Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly 50 60	Leu
Glu Trp Val Ala Val Ile Trp Tyr Val Gly Ser Asn Lys Tyr Tyr 65 70 75	Ala 80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys 85 90 95	Asn
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala 100 105 110	Val
Tyr Tyr Cys Ala Arg Ala Gln Glu Gly Met Ala Pro Asp Ala Phe	Asp

Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys 130 135 140

127

Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu 155 150 Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 165 170 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 200 Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn 215 Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg 230 Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys 325 330 Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu 345 Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 360 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 375 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 395 390 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 405 410 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 440 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 465 <210> SEQ ID NO 268 <211> LENGTH: 711 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 268 atggagacag acacactect getatgggtg etgetgetet gggtteeagg tteeacaggt

aacatcqtqc tqacccaatc tccaqcttct ttqqctqtqt ctctaqqqca qaqqqccacc

atatcct	gca g	agcca	agtga	aa	gtgt	tgat	agt	tate	ggca	ataç	gttt	at q	gcact	ggtac	!	180	
cagcagaa	aac c	aggad	cagco	ac	ccaa	aacto	cto	catct	tatc	ttg	catco	caa o	cctaç	gaatct		240	
ggggtcc	ctg c	caggt	tcag	j tg	gcaç	gtggg	g tct	agga	acag	actt	caco	cct (cacca	ttgat		300	
cctgtgg	agg c	tgato	gatgo	tg:	caac	cctat	tac	ctgto	cagc	aaaa	ataat	ga q	ggato	ggacg	ī	360	
ttcggtg	gag g	cacca	aagct	gg	aaat	caaa	a cgg	ggata	gatg	ctg	cacca	aac t	gtat	ccato	:	420	
ttcccac	cat c	cagto	gagca	gt.	taac	catct	gga	aggto	gcct	cagt	cgt	gtg (cttct	tgaac		480	
aacttcta	acc c	caaaç	gacat	ca	atgt	caag	g tgg	gaaga	attg	atg	gcagt	:ga a	acgad	aaaat		540	
ggcgtcct	tga a	cagtt	ggac	tg.	atca	aggac	ago	caaaq	gaca	gcad	cctac	cag o	catga	gcago	!	600	
accctcac	cgt t	gacca	aagga	cg.	agta	atgaa	e cga	acata	aaca	gcta	ataco	ctg t	gag	gccact		660	
cacaagad	cat c	aactt	caco	ca	ttgt	caaç	g ago	ettea	aaca	ggaa	atgaç	gtg 1	5			711	
<210> SI <211> LI <212> TY <213> OF	ENGTH YPE :	: 237 PRT	7	nusci	ulus	3											
<400> SI	EQUEN	CE: 2	269														
Met Glu 1	Thr I	Asp 1		eu :	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro			
Gly Ser		Gly <i>F</i> 20	Asn I	le '	Val	Leu	Thr 25	Gln	Ser	Pro	Ala	Ser 30	Leu	Ala			
Val Ser	Leu (Gly (Gln A	arg I	Ala	Thr 40	Ile	Ser	CÀa	Arg	Ala 45	Ser	Glu	Ser			
Val Asp 50	Ser '	Tyr (Gly A		Ser 55	Phe	Met	His	Trp	Tyr 60	Gln	Gln	Lys	Pro			
Gly Gln 65	Pro :	Pro I	-	eu : 70	Leu	Ile	Tyr	Leu	Ala 75	Ser	Asn	Leu	Glu	Ser 80			
Gly Val	Pro .		Arg F 35	he i	Ser	Gly	Ser	Gly 90	Ser	Arg	Thr	Asp	Phe 95	Thr			
Leu Thr		Asp I 100	Pro V	al (Glu	Ala	Asp 105	Asp	Ala	Ala	Thr	Tyr 110	Tyr	Сув			
Gln Gln	Asn 1	Asn (Glu A	ap 1	Arg	Thr 120	Phe	Gly	Gly	Gly	Thr 125	Lys	Leu	Glu			
Ile Lys 130	Arg .	Ala <i>P</i>	Asp A		Ala 135	Pro	Thr	Val	Ser	Ile 140	Phe	Pro	Pro	Ser			
Ser Glu 145	Gln :	Leu T		er (Gly	Gly	Ala	Ser	Val 155	Val	Cys	Phe	Leu	Asn 160			
Asn Phe	Tyr		Lув А	ap :	Ile	Asn	Val	Lys 170	Trp	Lys	Ile	Asp	Gly 175	Ser			
Glu Arg		Asn (Gly V	al :	Leu	Asn	Ser 185	Trp	Thr	Asp	Gln	Asp 190	Ser	Lys			
Asp Ser	Thr 1	Tyr S	Ser M	let :	Ser	Ser 200	Thr	Leu	Thr	Leu	Thr 205	Lys	Asp	Glu			
Tyr Glu 210	Arg 1	His A	Asn S		Tyr 215	Thr	Сув	Glu	Ala	Thr 220	His	Lys	Thr	Ser			

<210> SEQ ID NO 270 <211> LENGTH: 1419

Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 225 230235

<212> TYPE: DNA

-continued

<213> ORGANISM: Mus musculus <400> SEOUENCE: 270 atgggttggc tgtggaactt gctattcctg atggcagctg cccaaagtgc ccaaagcacag 60 atccagttgg tacagtctgg acctgagctg aagaagcctg gagagacagt caagatctcc 120 tgcaaggctt ctgggtatac cttcacaacc tatggaatga gctgggtgaa acaggctcca 180 ggaaagggtt taaagtggat gggctggata aacacctact ctggagtgcc aacatatgct 240 gatgactica agggacggtt tgccttctct ttggaaacct ctgccagcac tgcctatttg 300 cagatcaaca acctcaaaaa tgaggacacg gctacatatt tctgtgcaag cttatggtac 360 tacggtaggg cctttgacta ctggggccaa ggcaccactc tcacagtctc ctcagccaaa 420 acaacageee categgteta tecaetggee cetgtgtgtg gaggtacaac tggeteeteg 480 gtgactctag gatgcctggt caagggttat ttccctgagc cagtgacctt gacctggaac 540 tetggatece tgtecagtgg tgtgeacace tteecagete teetgeagte tggeetetae acceteagea geteagtgae tgtaaceteg aacacetgge ceageeagae cateacetge aatgtggccc acceggcaag cagcaccaaa gtggacaaga aaattgagcc cagagtgccc ataacacaga acccctgtcc tccactcaaa gagtgtcccc catgcgcagc tccagacctc ttqqqtqqac catccqtctt catcttccct ccaaaqatca aqqatqtact catqatctcc 900 ctqaqcccca tqqtcacatq tqtqqtqqtq qatqtqaqcq aqqatqaccc aqacqtccaq atcagctqqt ttqtqaacaa cqtqqaaqta cacacaqctc aqacacaaac ccataqaqaq 960 1020 gattacaaca gtactctccg ggtggtcagt gccctcccca tccagcacca ggactggatg aqtqqcaaqq aqttcaaatq caaqqtcaac aacaqaqccc tcccatcccc catcqaqaaa 1080 accatctcaa aacccaqaqq qccaqtaaqa qctccacaqq tatatqtctt qcctccacca 1140 gcagaagaga tgactaagaa agagttcagt ctgacctgca tgatcacagg cttcttacct 1200 1260 qccqaaattq ctqtqqactq qaccaqcaat qqqcqtacaq aqcaaaacta caaqaacacc gcaacagtcc tggactctga tggttcttac ttcatgtaca gcaagctcag agtacaaaag 1320 agcacttggg aaagaggaag tottttegec tgeteagtgg teeacgaggg tetgeacaat 1380 1419 caccttacga ctaagaccat ctcccggtct ctgggtaaa <210> SEO ID NO 271 <211> LENGTH: 473 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEOUENCE: 271 Met Gly Trp Leu Trp Asn Leu Leu Phe Leu Met Ala Ala Ala Gln Ser Ala Gln Ala Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr Gly Met Ser Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly Trp Ile Asn Thr Tyr Ser Gly Val Pro Thr Tyr Ala

Asp	Asp	Phe	Lys	Gly 85	Arg	Phe	Ala	Phe	Ser 90	Leu	Glu	Thr	Ser	Ala 95	Ser
Thr	Ala	Tyr	Leu 100	Gln	Ile	Asn	Asn	Leu 105	Lys	Asn	Glu	Asp	Thr 110	Ala	Thr
Tyr	Phe	Cys 115	Ala	Ser	Leu	Trp	Tyr 120	Tyr	Gly	Arg	Ala	Phe 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Thr	Leu	Thr 135	Val	Ser	Ser	Ala	Lys 140	Thr	Thr	Ala	Pro
Ser 145	Val	Tyr	Pro	Leu	Ala 150	Pro	Val	Cys	Gly	Gly 155	Thr	Thr	Gly	Ser	Ser 160
Val	Thr	Leu	Gly	Сув 165	Leu	Val	Lys	Gly	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
Leu	Thr	Trp	Asn 180	Ser	Gly	Ser	Leu	Ser 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
Ala	Leu	Leu 195	Gln	Ser	Gly	Leu	Tyr 200	Thr	Leu	Ser	Ser	Ser 205	Val	Thr	Val
Thr	Ser 210	Asn	Thr	Trp	Pro	Ser 215	Gln	Thr	Ile	Thr	Cys 220	Asn	Val	Ala	His
Pro 225	Ala	Ser	Ser	Thr	Lys 230	Val	Asp	Lys	Lys	Ile 235	Glu	Pro	Arg	Val	Pro 240
Ile	Thr	Gln	Asn	Pro 245	Cys	Pro	Pro	Leu	Lys 250	Glu	Cys	Pro	Pro	Сув 255	Ala
Ala	Pro	Asp	Leu 260	Leu	Gly	Gly	Pro	Ser 265	Val	Phe	Ile	Phe	Pro 270	Pro	ГÀа
Ile	Lys	Asp 275	Val	Leu	Met	Ile	Ser 280	Leu	Ser	Pro	Met	Val 285	Thr	Cys	Val
Val	Val 290	Asp	Val	Ser	Glu	Asp 295	Asp	Pro	Asp	Val	Gln 300	Ile	Ser	Trp	Phe
Val 305	Asn	Asn	Val	Glu	Val 310	His	Thr	Ala	Gln	Thr 315	Gln	Thr	His	Arg	Glu 320
Asp	Tyr	Asn	Ser	Thr 325	Leu	Arg	Val	Val	Ser 330	Ala	Leu	Pro	Ile	Gln 335	His
Gln	Asp	Trp	Met 340	Ser	Gly	ГÀв	Glu	Phe 345	ГÀв	CAa	ГÀа	Val	Asn 350	Asn	Arg
Ala	Leu	Pro 355	Ser	Pro	Ile	Glu	360 Lys	Thr	Ile	Ser	ГÀа	Pro 365	Arg	Gly	Pro
	Arg 370		Pro	Gln	Val	Tyr 375		Leu	Pro		Pro 380		Glu	Glu	Met
Thr 385	Lys	Lys	Glu	Phe	Ser 390	Leu	Thr	Сув	Met	Ile 395	Thr	Gly	Phe	Leu	Pro 400
Ala	Glu	Ile	Ala	Val 405	Asp	Trp	Thr	Ser	Asn 410	Gly	Arg	Thr	Glu	Gln 415	Asn
Tyr	Lys	Asn	Thr 420	Ala	Thr	Val	Leu	Asp 425	Ser	Asp	Gly	Ser	Tyr 430	Phe	Met
Tyr	Ser	Lys 435	Leu	Arg	Val	Gln	Lys 440	Ser	Thr	Trp	Glu	Arg 445	Gly	Ser	Leu
Phe	Ala 450	СЛа	Ser	Val	Val	His 455	Glu	Gly	Leu	His	Asn 460	His	Leu	Thr	Thr
Lys 465	Thr	Ile	Ser	Arg	Ser 470	Leu	Gly	Lys							

<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	H: 711 DNA		s							
<400> SEQUE	INCE: 272									
atggagacag	acacacto	ct gctat	gggtg d	ctgctgc	tct	gggtt	ccagg	ttcca	acaggt	60
gacattgtgc	tgacccaa	tc tccag	cttct t	tggctg	ıtgt	ctcta	gggca	gaggg	gccacc	120
atatcctgca	gagccagt	ga aagtg	ttgat a	agttatg	ıgca	atagt	tttat (gcact	ggtac	180
cagcagaaac	caggacag	cc accca	aactc c	ctcatct	atc	gtgca	tccaa	cctaç	gaatct	240
gggatccctg	ccaggttc	ag tggca	gtggg t	ctagga	cag	acttc	accct	cacca	attaat	300
cctgtggagg	ctgatgat	gt tgcaa	cctat t	cactgto	acc	aaagt	aatga (ggagt	acacg	360
ttcggagggg	ggaccaag	ct ggaaa	taaaa c	egggetg	jatg	ctgca	ccaac	tgtat	ccatc	420
ttcccaccat	ccagtgag	ca gttaa	catct c	ggaggtg	ject	cagtc	gtgtg	cttct	tgaac	480
aacttctacc	ccaaagac	at caatg	tcaag t	ggaaga	ittg	atggc.	agtga .	acgao	caaaat	540
ggcgtcctga	acagttgg	ac tgatc	aggac <i>a</i>	agcaaag	jaca	gcacc	tacag	catga	agcagc	600
accctcacgt	tgaccaag	ga cgagt	atgaa c	cgacata	aca	gctat	acctg	tgagg	gccact	660
cacaagacat	caacttca	cc cattg	tcaag a	agcttca	ıaca	ggaat	gagtg	t		711
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <400> SEQUE	H: 237 PRT IISM: Mus	musculu	ន							
Met Glu Thi	Asp Thr	Leu Leu	Leu Tr	rp Val	Leu	Leu L	eu Trp	Val	Pro	
1	5			10				15		
Gly Ser Thi	Gly Asp 20	lle Val	Leu Th		Ser	Pro A	la Ser 30	Leu	Ala	
Val Ser Let 35	Gly Gln	Arg Ala	Thr Il	le Ser	Cya	Arg A		Glu	Ser	
Val Asp Ser 50	Tyr Gly	Asn Ser 55	Phe Me	et His	Trp	Tyr G	ln Gln	Lys	Pro	
Gly Gln Pro	Pro Lys	Leu Leu 70	Ile Ty	yr Arg	Ala 75	Ser A	sn Leu	Glu	Ser 80	
Gly Ile Pro	Ala Arg 85	Phe Ser	Gly Se	er Gly	Ser	Arg T	hr Asp	Phe 95	Thr	
Leu Thr Ile		Val Glu			Val	Ala T	hr Tyr 110		Cys	
His Gln Ser		Glu Tyr	Thr Ph	ne Gly	Gly	-	hr Lys 25	Leu	Glu	
Ile Lys Arg		Ala Ala 135		nr Val	Ser	Ile P	he Pro	Pro	Ser	
Ser Glu Glr	ı Leu Thr		Gly Al	la Ser	Val 155		ys Phe	Leu	Asn 160	
Asn Phe Ty	-	Asp Ile	Asn Va	-		Lys I	le Asp	Gly 175		
Glu Arg Glr	_			_	Thr	Asp G	_		Lys	
	180		1.5	35			190			

Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu

195

200

Met Gly Trp Leu Trp Asn Leu Leu Phe Leu Met Ala Ala Ala Gln Ser

Ala Gln Ala Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys

-continued

205 Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> SEO ID NO 274 <211> LENGTH: 1383 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEOUENCE: 274 atgggttggc tgtggaactt gctattcctg atggcagctg cccaaagtgc ccaagcacag 60 atccagttgg tacagtctgg acctgagctg aagaagcctg gagagacagt caagatctcc 120 tgcaaggctt ctgggtatac cttcacaacc tatggaatga gctgggtgaa acaggctcca ggaaagggtt taaagtggat gggctggata aatacctact ctggagtgcc aacatatgct gatgactica agggacggtt tgccttctct ttggaaacct ctgccagcac tgcctatttg cagatcaaca acctcaaaaa tgaggacacg gctacatatt tctgtggaag agaccactac tacggggagg ttgcttactg gggccaaggg actctggtca ctgtctctgc agccaaaacg acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg accetgggat geetggteaa gggetattte eetgageeag tgacagtgae etggaactet 540 ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 600 ctqaqcaqct caqtqactqt cccctccaqc acctqqccca qccaqaccqt cacctqcaac 660 720 gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt 780 tgtaagcett geatatgtae agteecagaa gtateatetg tetteatett eeccecaaag cccaaqqatq tqctcaccat tactctqact cctaaqqtca cqtqttqttqt qqtaqacatc 840 agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 900 gctcagacga aaccccggga ggagcagatc aacagcactt tccgttcagt cagtgaactt 960 cccatcatgc accaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1020 gettteeetg eecceatega gaaaaceate teeaaaacea aaggeagace gaaggeteea 1080 caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtctgacc 1140 tgcatgataa caaacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1200 ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc 1260 tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1320 gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt 1380 1383 <210> SEQ ID NO 275 <211> LENGTH: 461 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 275

			20					25					30		
Pro	Gly	Glu 35	Thr	Val	Lys	Ile	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
Thr	Thr 50	Tyr	Gly	Met	Ser	Trp 55	Val	Lys	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
Lys	Trp	Met	Gly	Trp	Ile 70	Asn	Thr	Tyr	Ser	Gly 75	Val	Pro	Thr	Tyr	Ala 80
Asp	Asp	Phe	Lys	Gly 85	Arg	Phe	Ala	Phe	Ser 90	Leu	Glu	Thr	Ser	Ala 95	Ser
Thr	Ala	Tyr	Leu 100	Gln	Ile	Asn	Asn	Leu 105	Lys	Asn	Glu	Asp	Thr 110	Ala	Thr
Tyr	Phe	Cys 115	Gly	Arg	Asp	His	Tyr 120	Tyr	Gly	Glu	Val	Ala 125	Tyr	Trp	Gly
Gln	Gly 130	Thr	Leu	Val	Thr	Val 135	Ser	Ala	Ala	Lys	Thr 140	Thr	Pro	Pro	Ser
Val 145	Tyr	Pro	Leu	Ala	Pro 150	Gly	Ser	Ala	Ala	Gln 155	Thr	Asn	Ser	Met	Val 160
Thr	Leu	Gly	CÀa	Leu 165	Val	Lys	Gly	Tyr	Phe 170	Pro	Glu	Pro	Val	Thr 175	Val
Thr	Trp	Asn	Ser 180	Gly	Ser	Leu	Ser	Ser 185	Gly	Val	His	Thr	Phe 190	Pro	Ala
Val	Leu	Gln 195	Ser	Asp	Leu	Tyr	Thr 200	Leu	Ser	Ser	Ser	Val 205	Thr	Val	Pro
Ser	Ser 210	Thr	Trp	Pro	Ser	Gln 215	Thr	Val	Thr	CAa	Asn 220	Val	Ala	His	Pro
Ala 225	Ser	Ser	Thr	Lys	Val 230	Asp	Lys	Lys	Ile	Val 235	Pro	Arg	Asp	Cys	Gly 240
CAa	Lys	Pro	Cys	Ile 245	CAa	Thr	Val	Pro	Glu 250	Val	Ser	Ser	Val	Phe 255	Ile
Phe	Pro	Pro	Lys 260	Pro	ГÀа	Asp	Val	Leu 265	Thr	Ile	Thr	Leu	Thr 270	Pro	ГЛа
Val	Thr	Сув 275	Val	Val	Val	Asp	Ile 280	Ser	ГЛа	Asp	Asp	Pro 285	Glu	Val	Gln
	Ser 290	_			_	295					300				_
305	Arg				310					315					320
Pro	Ile	Met	His	Gln 325	Asp	Trp	Leu	Asn	Gly 330	ГÀЗ	Glu	Phe	ГÀЗ	Сув 335	Arg
Val	Asn	Ser	Ala 340	Ala	Phe	Pro	Ala	Pro 345	Ile	Glu	ГÀа	Thr	Ile 350	Ser	ГÀа
Thr	Lys	Gly 355	Arg	Pro	ГÀз	Ala	Pro 360	Gln	Val	Tyr	Thr	Ile 365	Pro	Pro	Pro
ГÀз	Glu 370	Gln	Met	Ala	ГÀз	Asp 375	ГÀЗ	Val	Ser	Leu	Thr 380	CÀa	Met	Ile	Thr
Asn 385	Phe	Phe	Pro	Glu	390	Ile	Thr	Val	Glu	Trp 395	Gln	Trp	Asn	Gly	Gln 400
Pro	Ala	Glu	Asn	Tyr 405	Lys	Asn	Thr	Gln	Pro 410	Ile	Met	Asp	Thr	Asp 415	Gly
Ser	Tyr	Phe	Val 420	Tyr	Ser	Lys	Leu	Asn 425	Val	Gln	Lys	Ser	Asn 430	Trp	Glu

Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn 440 His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 450 455 <210> SEQ ID NO 276 <211> LENGTH: 711 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 276 atggagacag acacactcct gctatgggtg ctgctgctct gggttccagg ttccacaggt 60 gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc atatcctgca gagccagtga aagtgttgat agttttggca atagttttat gcactggtac cagctgaaac caggacagcc acccaaactc ctcatctatc gtgcatccaa cctagaatct gggatccctg ccaggttcag tggcagtggg tctaggacag acttcaccct caccattaat cctgtggagg ctgatgatgt tgcaatttat tactgtcagc aaagtaatga ggagtacacg tteggagggg ggaccaaget ggaaataaaa egggetgatg etgeaccaae tgtateeate ttcccaccat ccagtgagca gttaacatct ggaggtgcct cagtcgtgtg cttcttgaac aacttctacc ccaaaqacat caatqtcaaq tqqaaqattq atqqcaqtqa acqacaaaat qqcqtcctqa acaqttqqac tqatcaqqac aqcaaaqaca qcacctacaq catqaqcaqc 660 acceteacgt tgaccaagga cgagtatgaa cgacataaca getatacetg tgaggecact 711 cacaagacat caacttcacc cattgtcaag agcttcaaca ggaatgagtg t <210> SEQ ID NO 277 <211> LENGTH: 237 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 277 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1.0 Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala 25 Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser 40 Val Asp Ser Phe Gly Asn Ser Phe Met His Trp Tyr Gln Leu Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser 70 Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asn Pro Val Glu Ala Asp Asp Val Ala Ile Tyr Tyr Cys Gln Gln Ser Asn Glu Glu Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn 150 155

Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys 180 185 Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu 200 Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser 215 Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> SEQ ID NO 278 <211> LENGTH: 1383 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 278 atgggttggc tgtggaactt gctattcctg atggcagctg cccaaagtgc ccaagcacag atccagttgg tacagtctgg acctgagctg aagaagcctg gagagacagt caagatctcc tgcaaggctt ctgggtatac cttcacaacc tatggaatga gctgggtgaa acaggctcca ggaaagggtt taaagtggat gggctggata aacacctcct ctggagtgcc aacatatgct gatgacttca tgggacggtt tgccttctct ttggaaacct ctgccagcac tgcctatttg cagatcaaca acctcaaaaa tgaggacacg gctacgtatt tctgtgcaag agaccgctac 360 tacggggagg ttgcttactg gggccaaggg actctggtca ccgtctctgc agccaaaacg 420 acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg 480 accotgagat gootgatcaa gagatattto cotgagacaa tgacaatgac otgaaactot 540 ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 600 ctgagcagct cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac 660 720 gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt tgtaagcett gcatatgtac agteecagaa gtateatetg tetteatett eecceeaaag 780 cccaaggatg tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc 840 agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 900 geteagaege aacceeggga ggageagtte aacageactt teegeteagt eagtgaactt 960 cccatcatgc atcaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1020 gettteeetg eececatega gaaaaccate tecaaaacca aaggeagace gaaggeteea 1080 caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtctgacc 1140 tgcatgataa cagacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1200 1260 ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1380 gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt aaa 1383

<210> SEQ ID NO 279

<211> LENGTH: 461

<212> TYPE: PRT

<213	3 > OF	RGANI	SM:	Mus	musc	culus	3								
< 400)> SE	EQUEN	ICE :	279											
Met 1	Gly	Trp	Leu	Trp 5	Asn	Leu	Leu	Phe	Leu 10	Met	Ala	Ala	Ala	Gln 15	Ser
Ala	Gln	Ala	Gln 20	Ile	Gln	Leu	Val	Gln 25	Ser	Gly	Pro	Glu	Leu 30	ГÀв	Lys
Pro	Gly	Glu 35	Thr	Val	Lys	Ile	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Tyr	Thr	Phe
Thr	Thr 50	Tyr	Gly	Met	Ser	Trp 55	Val	TÀa	Gln	Ala	Pro 60	Gly	ГÀв	Gly	Leu
Lys 65	Trp	Met	Gly	Trp	Ile 70	Asn	Thr	Ser	Ser	Gly 75	Val	Pro	Thr	Tyr	Ala 80
Asp	Asp	Phe	Met	Gly 85	Arg	Phe	Ala	Phe	Ser 90	Leu	Glu	Thr	Ser	Ala 95	Ser
Thr	Ala	Tyr	Leu 100	Gln	Ile	Asn	Asn	Leu 105	Tàa	Asn	Glu	Asp	Thr 110	Ala	Thr
Tyr	Phe	Cys 115	Ala	Arg	Asp	Arg	Tyr 120	Tyr	Gly	Glu	Val	Ala 125	Tyr	Trp	Gly
Gln	Gly 130	Thr	Leu	Val	Thr	Val 135	Ser	Ala	Ala	Lys	Thr 140	Thr	Pro	Pro	Ser
Val 145	Tyr	Pro	Leu	Ala	Pro 150	Gly	Ser	Ala	Ala	Gln 155	Thr	Asn	Ser	Met	Val 160
Thr	Leu	Gly	Cys	Leu 165	Val	Lys	Gly	Tyr	Phe 170	Pro	Glu	Pro	Val	Thr 175	Val
Thr	Trp	Asn	Ser 180	Gly	Ser	Leu	Ser	Ser 185	Gly	Val	His	Thr	Phe 190	Pro	Ala
Val	Leu	Gln 195	Ser	Aap	Leu	Tyr	Thr 200	Leu	Ser	Ser	Ser	Val 205	Thr	Val	Pro
Ser	Ser 210	Thr	Trp	Pro	Ser	Glu 215	Thr	Val	Thr	CAa	Asn 220	Val	Ala	His	Pro
Ala 225	Ser	Ser	Thr	Lys	Val 230	Asp	Lys	Lys	Ile	Val 235	Pro	Arg	Asp	Cys	Gly 240
Cys	Lys	Pro	Cys	Ile 245	Cys	Thr	Val	Pro	Glu 250	Val	Ser	Ser	Val	Phe 255	Ile
Phe	Pro	Pro	Lys 260	Pro	ГÀЗ	Asp	Val	Leu 265	Thr	Ile	Thr	Leu	Thr 270	Pro	Lys
Val	Thr	Cys 275	Val	Val	Val	Asp	Ile 280	Ser	Lys	Asp	Asp	Pro 285	Glu	Val	Gln
Phe	Ser 290	Trp	Phe	Val	Asp	Asp 295	Val	Glu	Val	His	Thr 300	Ala	Gln	Thr	Gln
Pro 305	Arg	Glu	Glu	Gln	Phe 310	Asn	Ser	Thr	Phe	Arg 315	Ser	Val	Ser	Glu	Leu 320
Pro	Ile	Met	His	Gln 325	Asp	Trp	Leu	Asn	Gly 330	Lys	Glu	Phe	ГЛа	335 235	Arg
Val	Asn	Ser	Ala 340	Ala	Phe	Pro	Ala	Pro 345	Ile	Glu	Lys	Thr	Ile 350	Ser	Lys
Thr	rys	Gly 355	Arg	Pro	ГÀа	Ala	Pro 360	Gln	Val	Tyr	Thr	Ile 365	Pro	Pro	Pro
ГÀа	Glu 370	Gln	Met	Ala	Lys	Asp 375	Lys	Val	Ser	Leu	Thr 380	Cya	Met	Ile	Thr

Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly 405 410 Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu 420 425 Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn 440 His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 455 <210> SEQ ID NO 280 <211> LENGTH: 696 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus <400> SEQUENCE: 280 atggctccag tccaacttct agggcttttg ctgctctgcc tccgagccat gagatgtgac atccagatga cccagtctcc ttcactcctg tcagcatctg tgggagacag agtcactctc agetgeaaag caagteagaa tatttacaag taettaaact ggtateagea aaagettgga gaageteeca aacteetgat atattataca aacagtttge aaacgggeat eecateaagg 240 ttcagtggca gtggatctgg tacagatttc acacttacca tcagcagcct gcagcctgaa gatgttgcca catattactg ctatcagtat aacagtgggc ccacgtttgg agctgggacc aagctggaac tgaaacgggc tgatgctgca ccaactgtat ctatcttccc accatccacg 420 gaacagttag caactggagg tgcctcagtc gtgtgcctca tgaacaactt ctatcccaga 480 gacatcagtg tcaagtggaa gattgatggc actgaacgac gagatggtgt cctggacagt 540 qttactqatc aqqacaqcaa aqacaqcacq tacaqcatqa qcaqcaccct ctcqttqacc 600 aaggetgaet atgaaagtea taacetetat aeetgtgagg ttgtteataa gacateatee 660 tcacccgtcg tcaagagctt caacaggaat gagtgt 696 <210> SEQ ID NO 281 <211> LENGTH: 232 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus <400> SEOUENCE: 281 Met Ala Pro Val Gln Leu Leu Gly Leu Leu Leu Cys Leu Arg Ala Met Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Leu Leu Ser Ala Ser Val Gly Asp Arg Val Thr Leu Ser Cys Lys Ala Ser Gln Asn Ile Tyr Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Leu Gly Glu Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Asn Ser Leu Gln Thr Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Tyr Gln Tyr Asn Ser 105

gttactctga aagagtctgg coctgggata ttgcagcctt cocagaccct cagtctgact 12: tgctctttct ctgggttttc actgagcact tctggtatat gtgtgagctg gattcgtcag 18: ccttcaggga agggtctgga gtggctggca actatttgtt gggaggatag taagggctac 24: aacccttctc tgaagaaccg gctcacaatc tccaaggaca cctccaacaa ccaagcattc 30: ctcaaggatca ccagtgtgga cactgcagat accgccatat actactgtgc tcggcccctt 36: aactacggag ggtatagtga gctagaattg gattactggg gccaaggagt catggtcaca 42: gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctctc 48: aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 54: accgtgacct ggaactctgg agccctgtcc agcggttgc acaccttccc agctgctctg 60: cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 66: caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 72: gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 78: ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 84: gtggtagaca ttagccagaa tgatcccgg gtccggttca gctggtttat agatgacgtg 90: gaagtccaca cagctcagac tcatgcccg gagaagcagt ccaacagcac tttacgctca 96: gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgt tcaaatgcaaa 102: gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca 108:
Thr Gly Gly Ala Ser Val Val Cys Leu Met Asm Asm Phe Tyr Pro Arg 150
Asp Ile Ser Val Lys Trp Lys Ile Asp 61y Thr Glu Arg Arg Asp Gly 175 Val Leu Asp Ser Val Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser 180 185 185 205 Met Ser Ser Thr Leu Ser Leu Thr Lys Ala Asp Tyr Glu Ser His Asn 205 Leu Tyr Thr Cys Glu Val Val His Lys Thr Ser Ser Ser Pro Val Val 215 220 Lys Ser Phe Asn Arg Asm Glu Cys 225 <2210 SEQ ID NO 282 <2211 LENGTH: 1395 <2122 TYPE: DNA <2132 TYPE: DNA <2132 TYPE: DNA cettaggaagg ttactteet atteetgetg etgattate etgagetg gategteag aggstetg gategteag accettete tegagaace tetgagata tiggaggagga aggstetgag getgagaaca tetcagagaa eccacaca caagcatte 300 accettete tigaagaaceg getacaatat tocaaggaa cetcagaga eccacagagaga accettete totagagaaceg getacaatat tocaaggaa cetcagaga tactgeaga accettete tigaagaaceg getacaatat gattategg gecaagagat catggteaca 420 accettete tigaagaacea accetete getatatea accaggaga getaagtaga getagaatat gattategg gecaagaga cetcagaacte caagcatte 300 acctacagaga getaagtaga getagaatat gattategg gecaagaga cetcagaacea caagcatte 300 acctacagaga getaagtaga getagaatat gattategg gecaagagaga catggteaca 420 getectecag etgaacaaca agceccatet getatecac tigeteetga acctigeteaca 420 getectecag etgaacaaca agceccatet getatecaca tigeteetga acctigeteaca 420 getectecag etgaacacac agcecteca agcigtiga accettece agcigtiga accigtigata accitigeteaca accitigacaca agcitigate accitigacaca accitigacaca acciticaca agcitigate accitigacaca accitigac
Val Leu Asp Ser Val Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser 180 Met Ser Ser Thr Leu Ser Leu Thr Lys Ala Asp Tyr Glu Ser His Asn 200 205 Leu Tyr Thr Cys Glu Val Val His Lys Thr Ser Ser Ser Pro Val Val 210 215 Lys Ser Phe Asn Arg Asn Glu Cys 225 230 <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
Met Ser Ser Thr Leu Ser Leu Thr Lys Ala Asp Tyr Glu Ser His Asn 195 205 Leu Tyr Thr Cys Glu Val Val His Lys Thr Ser Ser Ser Pro Val Val Lys Ser Phe Asn Arg Asn Glu Cys 225 230 230 2215 LENGTH: 1395 2220 220 220 220 220 220 220 220 220 2
Leu Tyr Thr Cys Glu Val Val His Lys Thr Ser Ser Ser Pro Val Val Z15 Lys Ser Phe Asn Arg Asn Glu Cys 225 <pre> <210</pre>
Lys Ser Phe Asn Arg Asn Glu Cys 225 230
225 230
<pre><211> LENGTH: 1395 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus </pre> <pre><400> SEQUENCE: 282 atgggcaggc ttacttecte attectgetg etgattatec etgeatatgt ettgteteag 60 gttactetga aagagtetgg eeetgggata ttggeageet eeeagaceet cagtetgaet 120 tgetetttet etgggttte aetgageaet tetggtatat gtgtgagetg gattegteag 180 cetteaggga agggtetgga gtggetggea actatttgtt gggaggatag taagggetae 240 aaccettete tgaagaaceg geteacaate tecaaggaca eetecaacaa eeaageatte 300 ctcaagatea eeagtgtgga cactgeagat aeegeeatat actactgtge teggeeeett 360 aactacggag ggtatagtga getagaattg gattactggg gecaaggagt eatggteaca 420 gtetecteag etgaaacaac ageeecatet gtetateeae tggeteetgg aactgeteet 480 aacagtacat eeatggtgae eetgggatge etggteaagg getattteee tgageeagte 540 accgtgacet ggaactetgg ageeetgtee ageggtgge acacetteee agetgteetg 600 cagtetggae tetacactet eaccagetea gtgaetgtae eetecageae etggteeage 660 caggeegtea eetggaacgt ageeeaceeg geeageagea eeaaggtgga eaagaaaatt 720 gtgecaaggg aatgeaatee ttgtggatgt acageteag aagtacate tgeteteate 780 tteeceecaa agaccaaaga tggeeteace atcactetga eteetaaggt eacgtgtgt 840 gtggtagaca ttagecagaa tgateeegag gteeggttea getggttat agatgaegt 900 gaagtecaca eageteagae teatgeeeg gagaageagt eeaacageae tttacgetea 960 gteagtgaac tececategt geacegggae tggeteaatg geaagaegt eaaatgeaaa 1020 gteaacagtg gageatteee tgeececate gagaaagaag teceaaage egaaggeaca 1080 gteaagtgaac tececategt geacegggae tggeteaatg geaagaegt eaaatgeaaa 1020 gteaacagtg gageatteee tgeececate gagaaaagaa teteecaaace egaaggeaca 1080</pre>
atgggcaggc ttacttcctc attectgctg ctgattatec ctgcatatgt cttgtctcag gttactctga aagagtctgg ccctgggata ttgcagcctt cccagaccct cagtctgact tgctctttct ctgggttttc actgagcact tctggtatat gtgtgagctg gattcgtcag 180 ccttcaggga agggtctgga gtggctggca actatttgtt gggaggatag taagggctac 240 aacccttctc tgaagaaccg gctcacaatc tccaaggaca cctccaacaa ccaagcattc 300 ctcaaggatca ccagtgtgga cactgcagat accgccatat actactgtgc tcggcccctt 360 aactacggag ggtatagtga gctagaattg gattactggg gccaaggagt catggtcaca 420 gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctcc 480 aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 540 accgtgacct ggaactctgg agccctgtcc agcggttgc acaccttccc agctgtcctg 600 cagtctggac tctacactct caccagctca gtgactgac cctccaagac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttcccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgtt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgcccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gttactctga aagagtctgg ccctgggata ttgcagcctt cccagacct cagtctgact tgctctttet ctgggtttte actgagcact tctggtatat gtgtgagctg gattcgtcag 180 ccttcaggga agggtctgga gtggctggca actatttgtt gggaggatag taagggctac 240 aaccettete tgaagaaccg getcacaate tecaaggaca ectecaacaa ecaagcatte 300 ctcaagatca ecagtgtgga cactgcagat accgccatat actactgtge teggeceett 360 aactacggag ggtatagtga getagaattg gattactggg gecaaggagt catggtcaca 420 gtctectcag etgaaacaac agececatet gtctatecac tggetcetgg aactgetee 480 aaaagtaact ccatggtgac ectgggatge etggtcaagg getattteee tgagccagte 540 accgtgacet ggaactetgg agecetgtee ageggtgtge acacetteee agetgteetg 600 cagtetggac tetacactet eaceagetca gtgactgtac ectecageac etggtceage 660 caggeegtea ectgcaacgt ageceaceeg gecagcagca ecaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatee ttgtggatgt acaggetcag aagtateate tgtetteate 780 tteececcaa agaccaaaga tgtgetcace ateactetga etectaaggt eacgtgtgt 840 gtggtagaca ttagccagaa tgateceega gteeggttea getggtttat agatgacgtg 900 gaagtecaca eagetcagaa teatgeceeg gagaagcagt ecaacagcac tttacgetca 960 gtcagtgaac tececategt geacegggac tggetcaatg geagagctt caaatgcaaa 1020 gtcaacagtg gagcatteee tgeececate gagaaaagca tetecaaace egaaggcaca 1080 gtcaacagtg gagcatteee tgeececate gagaaaagca tetecaaace egaaggcaca 1080
tgctctttct ctgggttttc actgagcact tctggtatat gtgtgagctg gattcgtcag 180 ccttcaggga agggtctgga gtggctggca actatttgtt gggaggatag taagggctac 240 aacccttctc tgaagaaccg gctcacaatc tccaaggaca cctccaacaa ccaagcattc 300 ctcaagatca ccagtgtgga cactgcagat accgccatat actactgtgc tcggcccctt 360 aactaccggag ggtatagtga gctagaattg gattactggg gccaaggagt catggtcaca 420 gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctctc 480 aaaagtaact ccatggtgac cctgggatge ctggtcaagg gctatttccc tgagccagtc 540 accgtgacet ggaactctgg agccctgtce agcggtgtgc acaccttcce agctgtcctg 600 cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag acacttctca tgctctcatc 780 ttcccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgag gtccggtca gctggttta agatgacgtg 900 gaagtccaca cagctcagca tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca 1080 gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
cottcaggga agggtotgga gtggctggca actatttgtt gggaggatag taagggctac 240 aaccottoto tgaagaaccg gotcacaato tocaaggaca cotcoaacaa coaagcatto 300 ctcaagatca coagtgtgga cactgcagat accgccatat actactgtgo toggococtt 360 aactacggag ggtatagtga gotagaattg gattactggg gocaaggagt catggtcaca 420 gtotcotcag otgaaacaac agococatot gtotatocac tggctcotgg aactgctoto 480 aaaagtaact coatggtgac cotgggatgo otggtoaagg gotatttoco tgagocagto 540 accgtgacot ggaactotgg agocotgtoc agoggtggo acacettoco agotgoctgo 660 cagtotggac totacactot caccagotoa gtgactgtac cotcoagoac otggtocago 660 caggoogtoa cotgoaacgt agococaccg gocagoagoa coaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatoo ttgtggatgt acaggotoag aagtatoato tgtottoato 780 ttocococaa agacoaaaga tgtgotcaco atcactotga otoctaaggt cacgtgtgtt 840 gtggtagaca ttagocagaa tgatocogag gtcoggttoa gotggtttat agatgacgtg 900 gaagtocaca cagotoagac toatgococg gagaaagcagt coaacagcac tttacgotoa 960 gtcagtgaac tocccatogt goaccgggac tggotcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattoco tgococcato gagaaaagca totocaaacc cgaaggcaca 1080
aaccettete tgaagaaccg geteacaate tecaaggaca cetecaacaa ceaageatte 300 etcaagatea ceagtgtgga cactgeagat accgecatat actactgtge teggeeeett 360 aactacggag ggtatagtga getagaattg gattactggg gecaaggagt catggteaca 420 gteteeteag etgaaacaac ageeecatet gtetateeac tggeteetgg aactgetete 480 aaaagtaact ceatggtgac ectgggatge etggteaagg getattteee tgageeagte 540 accgtgacet ggaactetgg ageeetgtee ageggtgtge acacetteee agetgteetg 600 cagtetggac tetacactet caccagetea gtgactgtac ectecageac etggteeage 660 caggeegtea ectgeaacgt ageeeageeg gecaageagea ceaaggtgga caagaaaatt 720 gtgeeaaggg aatgeaatee ttgtggatgt acaggeteag aagtateate tgtetteate 780 gtggtagaca teageeagaa tgateeega gteeggtea getggttat agatgaegtg 900 gaagteeaca aggeeagaa teatgeeega gteeggtea getggttat agatgaegtg 900 gteagtgaac teeceategt geacegggae tggeteaatg geaagaegt caaatgeaaa 1020 gteaacagtg gageatteee tgeeeccate gagaaaagea teteceaacc egaaggeaca 1080
ctcaagatca ccagtgtgga cactgcagat accgccatat actactgtgc tcggcccctt 360 aactacggag ggtatagtga gctagaattg gattactggg gccaaggagt catggtcaca 420 gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctctc 480 aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 540 accgtgacct ggaactctgg agccctgtcc agcggtgtgc acaccttccc agctgcctg 600 cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgg gcagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca
aactacggag ggtatagtga gctagaattg gattactggg gccaaggagt catggtcaca 420 gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctctc 480 aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 540 accgtgacct ggaactctgg agccctgtcc agcggtgtgc acaccttccc agctgtcctg 600 cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgcccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gtctcctcag ctgaaacaac agccccatct gtctatccac tggctcctgg aactgctctc 480 aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 540 accgtgacct ggaactctgg agccctgtcc agcggtgtgc acaccttccc agctgtcctg 600 cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca
aaaagtaact ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtc 540 accgtgacct ggaactctgg agccctgtcc agcggtgtgc acaccttccc agctgtcctg 600 cagtctggac tctacactct caccagctca gtgactgtac cctccagcac ctggtccagc 660 caggccgtca cctgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgcccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
accgtgacct ggaactctgg agccctgtcc agcggtgtgc acaccttccc agctgtcctg 600 cagtctggac totacactct caccagctca gtgactgtac cotccagcac etggtccagc 660 caggccgtca cotgcaacgt agcccacccg gccagcagca ccaaggtgga caagaaaatt 720 gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtottcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgcccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
cagtetggae tetacactet caccagetea gtgaetgtae cetecageae etggtecage 660 caggeegtea cetgeaaegt ageceaeceg gecageagea ceaaggtgga caagaaaatt 720 gtgeeaaggg aatgeaatee ttgtggatgt acaggeteag aagtateate tgtetteate 780 tteeceecaa agaceaaaga tgtgeteaec ateactetga etectaaggt caegtgtgtt 840 gtggtagaca ttageeagaa tgateeegag gteeggttea getggtttat agatgaegtg 900 gaagteeaca cageteagae teatgeeeeg gagaageagt ceaacageae tttaegetea 960 gteagtgaae teeceategt geaeegggae tggeteaatg geaagaegtt caaatgeaaa 1020 gteaacagtg gageatteee tgeeeceate gagaaaagea tetecaaaee egaaggeaca 1080
caggoogtca octgoaacgt agoccaccog gocagoagca coaaggtgga caagaaaatt 720 gtgocaaggg aatgoaatco ttgtggatgt acaggotcag aagtatoato tgtottoato 780 ttoccoccaa agaccaaaga tgtgotcacc atcactotga otoctaaggt cacgtgtgtt 840 gtggtagaca ttagccagaa tgatoccgag gtcoggttca gotggttat agatgacgtg 900 gaagtocaca cagotcagac tcatgoccog gagaagcagt ocaacagoac tttacgotca 960 gtcagtgaac tocccatogt gcaccgggac tggotcaatg gcaagacgtt caaatgoaaa 1020 gtcaacagtg gagcattooc tgocccato gagaaaagca totccaaacc ogaaggcaca 1080
gtgccaaggg aatgcaatcc ttgtggatgt acaggctcag aagtatcatc tgtcttcatc 780 ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgtgtt gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
ttccccccaa agaccaaaga tgtgctcacc atcactctga ctcctaaggt cacgtgttt 840 gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gtggtagaca ttagccagaa tgatcccgag gtccggttca gctggtttat agatgacgtg 900 gaagtccaca cagctcagac tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gaagtccaca cagctcagac tcatgccccg gagaagcagt ccaacagcac tttacgctca 960 gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gtcagtgaac tccccatcgt gcaccgggac tggctcaatg gcaagacgtt caaatgcaaa 1020 gtcaacagtg gagcattccc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
gtcaacagtg gagcattecc tgcccccatc gagaaaagca tctccaaacc cgaaggcaca 1080
ccacgaggtc cacaggtata caccatggcg cctcccaagg aagagatgac ccagagtcaa 1140
gtcagtatca cctgcatggt aaaaggcttc tatcccccag acatttatac ggagtggaag 1200
atgaacgggc agccacagga aaactacaag aacactccac ctacgatgga cacagatggg 1260

agttacttcc tctacagcaa gctcaatgta aagaaagaaa catggcagca gggaaacact 1320

ttca	acgto	gtt d	etgt	gctg	ca to	gagg	gaate	g cad	caaco	cacc	ata	ctga	gaa q	gagto	ctctcc	1380
cact	ctco	gg g	gtaaa	a												1395
<211 <212	L> LE 2> TY	ENGTI PE:		65	tus 1	norve	egicu	ıs								
< 400)> SI	EQUEI	ICE :	283												
Met 1	Gly	Arg	Leu	Thr 5	Ser	Ser	Phe	Leu	Leu 10	Leu	Ile	Ile	Pro	Ala 15	Tyr	
Val	Leu	Ser	Gln 20	Val	Thr	Leu	Lys	Glu 25	Ser	Gly	Pro	Gly	Ile 30	Leu	Gln	
Pro	Ser	Gln 35	Thr	Leu	Ser	Leu	Thr 40	Сув	Ser	Phe	Ser	Gly 45	Phe	Ser	Leu	
Ser	Thr 50	Ser	Gly	Ile	Cys	Val 55	Ser	Trp	Ile	Arg	Gln 60	Pro	Ser	Gly	Lys	
Gly 65	Leu	Glu	Trp	Leu	Ala 70	Thr	Ile	Сув	Trp	Glu 75	Asp	Ser	Lys	Gly	Tyr 80	
Asn	Pro	Ser	Leu	Lys 85	Asn	Arg	Leu	Thr	Ile 90	Ser	Lys	Asp	Thr	Ser 95	Asn	
Asn	Gln	Ala	Phe 100	Leu	ГÀа	Ile	Thr	Ser 105	Val	Asp	Thr	Ala	Asp 110	Thr	Ala	
Ile	Tyr	Tyr 115	Cha	Ala	Arg	Pro	Leu 120	Asn	Tyr	Gly	Gly	Tyr 125	Ser	Glu	Leu	
Glu	Leu 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Val	Met	Val	Thr 140	Val	Ser	Ser	Ala	
Glu 145	Thr	Thr	Ala	Pro	Ser 150	Val	Tyr	Pro	Leu	Ala 155	Pro	Gly	Thr	Ala	Leu 160	
Lys	Ser	Asn	Ser	Met 165	Val	Thr	Leu	Gly	Cys 170	Leu	Val	Lys	Gly	Tyr 175	Phe	
Pro	Glu	Pro	Val 180	Thr	Val	Thr	Trp	Asn 185	Ser	Gly	Ala	Leu	Ser 190	Ser	Gly	
Val	His	Thr 195	Phe	Pro	Ala	Val	Leu 200	Gln	Ser	Gly	Leu	Tyr 205	Thr	Leu	Thr	
Ser	Ser 210	Val	Thr	Val	Pro	Ser 215	Ser	Thr	Trp	Ser	Ser 220	Gln	Ala	Val	Thr	
Cys 225	Asn	Val	Ala	His	Pro 230	Ala	Ser	Ser	Thr	Lys 235	Val	Asp	Lys	Lys	Ile 240	
Val	Pro	Arg	Glu	Cys 245	Asn	Pro	Cys	Gly	Сув 250	Thr	Gly	Ser	Glu	Val 255	Ser	
Ser	Val	Phe	Ile 260	Phe	Pro	Pro	Lys	Thr 265	Lys	Asp	Val	Leu	Thr 270	Ile	Thr	
Leu	Thr	Pro 275	Lys	Val	Thr	Cys	Val 280	Val	Val	Asp	Ile	Ser 285	Gln	Asn	Asp	
Pro	Glu 290	Val	Arg	Phe	Ser	Trp 295	Phe	Ile	Asp	Asp	Val 300	Glu	Val	His	Thr	
Ala 305	Gln	Thr	His	Ala	Pro 310	Glu	Lys	Gln	Ser	Asn 315	Ser	Thr	Leu	Arg	Ser 320	
Val	Ser	Glu	Leu	Pro 325	Ile	Val	His	Arg	Asp 330	Trp	Leu	Asn	Gly	Lys 335	Thr	
Phe	Lys	Cys	Lys	Val	Asn	Ser	Gly	Ala	Phe	Pro	Ala	Pro	Ile	Glu	ГЛа	

```
340
                                345
                                                    350
Ser Ile Ser Lys Pro Glu Gly Thr Pro Arg Gly Pro Gln Val Tyr Thr
                            360
Met Ala Pro Pro Lys Glu Glu Met Thr Gln Ser Gln Val Ser Ile Thr
                       375
Cys Met Val Lys Gly Phe Tyr Pro Pro Asp Ile Tyr Thr Glu Trp Lys
385
                    390
                                        395
Met Asn Gly Gln Pro Gln Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met
                405
Asp Thr Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Lys
           420
                                425
Glu Thr Trp Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu
                          440
Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly
                      455
Lys
<210> SEQ ID NO 284
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(3)
<223 > OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5)..(6)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEOUENCE: 284
Val Ile Xaa Tyr Xaa Xaa Ser Asn Lys Tyr Tyr Ala Asp Ser Val Lys
Gly
<210> SEQ ID NO 285
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5) .. (5)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (8)..(11)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(15)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 285
Trp Ile Xaa Ala Xaa Asn Gly Xaa Xaa Xaa Xaa Ala Xaa Xaa Gln
```

```
5
                                    10
                                                        15
Xaa
<210> SEQ ID NO 286
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 286
Ala Gln Glu Gly Xaa Ala Pro Asp Ala Phe Asp Ile
<210> SEQ ID NO 287
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 287
Gln Ala Trp Tyr Ser Ser Thr Asn Val Xaa
<210> SEQ ID NO 288
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (9) .. (10)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 288
Gln Ala Trp Asp Ser Ser Thr Ala Xaa Xaa
               5
<210> SEQ ID NO 289
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7)..(11)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 289
Gln Ser Asp Tyr Ser Ser Xaa Xaa Xaa Xaa
   5
<210> SEQ ID NO 290
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 290
cagtetgtgc tgactcagec accetcaacg tetgggacec cegggeagag ggteaccate
tettgttetg gaageaacte caacategga agteaaactg ttaactggta ceageaacte
```

-continued	
ccaggaacgg cccccaaact cctcatcttt agtcatcatc accggccctc aggggtccct	180
gaccgattet etggetecaa gtetggeace teageeteee tggeeateag tgggetecag	240
tctgaggatg aggctgatta ttactgtgca gcatgggatg acagcctgaa tggtgtggta	300
ttcggcggag ggaccaaact gaccgtccta	330
<210> SEQ ID NO 291 <211> LENGTH: 110 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 291	
Gln Ser Val Leu Thr Gln Pro Pro Ser Thr Ser Gly Thr Pro Gly Gln 1 5 10 15	
Arg Val Thr Ile Ser Cys Ser Gly Ser Asn Ser Asn Ile Gly Ser Gln 20 25 30	
Thr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45	
Ile Phe Ser His His His Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60	
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln 65 70 75 80	
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu 85 90 95	
Asn Gly Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 110	
<210> SEQ ID NO 292 <211> LENGTH: 375 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 292	
gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc	60
teetgtgeag cetetggatt caettteagt gaegeetgga tgagetgggt eegeeagget	120
ccagggaagg ggctggagtg ggttggccgt attaaaagca aaactgatgg tgggacaaca	180
gacttegetg caccegtgaa aggeagatte accateteaa gagatgatte aaaaaacaeg	240
ctgtatctgc aaatgaacag cctgaacacc gaggacacag cagtgtatta ctgtacctca	300
teteatagea gegeetggta eggetaette ggtatggaeg tetggggeea agggaecaeg	360
gtcaccgtct cctca	375
<210> SEQ ID NO 293 <211> LENGTH: 125 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 293	
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15	
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ala 20 25 30	
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	

```
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Phe Ala Ala
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Asn Thr Glu Asp Thr Ala Val Tyr
               85
                                  90
Tyr Cys Thr Ser Ser His Ser Ser Ala Trp Tyr Gly Tyr Phe Gly Met
         100
                             105
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                       120
     115
<210> SEQ ID NO 294
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 294
Ser Gly Ser Asn Ser Asn Ile Gly Ser Gln Thr Val Asn
<210> SEQ ID NO 295
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 295
Ser His His Arg Pro Ser
1 5
<210> SEQ ID NO 296
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 296
Ala Ala Trp Asp Asp Ser Leu Asn Gly Val Val
             5
<210> SEQ ID NO 297
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 297
Gly Phe Thr Phe Ser Asp Ala Trp Met Ser
1 5
<210> SEQ ID NO 298
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 298
Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Phe Ala Ala Pro
                                   10
Val Lys Gly
<210> SEQ ID NO 299
<211> LENGTH: 14
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 299
Ser His Ser Ser Ala Trp Tyr Gly Tyr Phe Gly Met Asp Val
               5
                                   10
<210> SEQ ID NO 300
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 300
cagtetgtge tgactetgte acceteageg tetgggacce cegggeagag ggteaceate
                                                                      60
tettgttetg gaageacete caacategga agtaatactg taaattggtt ecageagete
ccaggaacgg cccccaaact cctcatcttt agtaataatc agcggccctc aggggtccct
gaccgatttt ctgcctccaa gtctggcacc tcagcctccc tggccatcag tgggctccag
                                                                     240
tctgaggatg aggctgatta ttactgtgca gcgtgggatg acagcctgaa tggtgtggta
                                                                     330
ttcggcggag ggaccaagct gaccgtccta
<210> SEQ ID NO 301
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 301
Gln Ser Val Leu Thr Leu Ser Pro Ser Ala Ser Gly Thr Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Thr Ser Asn Ile Gly Ser Asn
                               25
Thr Val Asn Trp Phe Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
                           40
Ile Phe Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Ala Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu
                                   90
Asn Gly Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
                               105
<210> SEQ ID NO 302
<211> LENGTH: 375
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 302
gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc
tcctgtgcag cctctggaat cactttcagt aacgcctgga tgagctgggt ccgccaggct
ccagggaagg ggctggagtg ggttggccgt atcaaaagca agactgatga tgggacaaca
gactacgctg cacccgtgaa aggcagattc accatctcaa gagatgattc aaaaaacacg
ctgtatctgc aaatgaacag cctgaaaacc gaggacacag ccgtgtatta ctgtaccaca
                                                                     360
totgatagea geggetggta eggetactae ggtatggaeg totggggeea agggaecaeg
```

```
375
qtcaccqtct cctca
<210> SEQ ID NO 303
<211> LENGTH: 125
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 303
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
                                     10
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ile Thr Phe Ser Asn Ala
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Gly Arg Ile Lys Ser Lys Thr Asp Asp Gly Thr Thr Asp Tyr Ala Ala
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
                    70
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
Tyr Cys Thr Thr Ser Asp Ser Ser Gly Trp Tyr Gly Tyr Tyr Gly Met 100 \phantom{\bigg|}105\phantom{\bigg|}
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
<210> SEQ ID NO 304
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 304
Ser Gly Ser Thr Ser Asn Ile Gly Ser Asn Thr Val Asn
              5
<210> SEQ ID NO 305
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 305
Ser Asn Asn Gln Arg Pro Ser
    5
<210> SEQ ID NO 306
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 306
Ala Ala Trp Asp Asp Ser Leu Asn Gly Val Val
<210> SEQ ID NO 307
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 307
Gly Ile Thr Phe Ser Asn Ala Trp Met Ser
```

```
5
                                    10
<210> SEQ ID NO 308
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 308
Arg Ile Lys Ser Lys Thr Asp Asp Gly Thr Thr Asp Tyr Ala Ala Pro
                                    10
Val Lys Gly
<210> SEQ ID NO 309
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 309
Ser Asp Ser Ser Gly Trp Tyr Gly Tyr Tyr Gly Met Asp Val
<210> SEQ ID NO 310
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 310
caqtctqtqc tqactcaqcc accttcaqcq tctqqqaccc ccqqqcaqaq qqtcaccatc
                                                                       60
tettgttttg gaageagete caacategga agtaattetg taaaetggta eeageagete
                                                                      120
ccaggaacgg cccccaaact cctcatcttt agtaatgatc agcggccctc aggggtccct
                                                                      180
gaccgattct ctgggtccaa gtctggcacc tcagattccc tggccatcag tgggctccag
                                                                      240
tctgaggatg aagctgatta ttactgtgca gcatgggatg acagcctgaa tggtgtggta
                                                                      300
ttcggcggag ggaccaagct gaccgtccta
                                                                      330
<210> SEQ ID NO 311
<211> LENGTH: 110
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 311
Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln
                         10
Arg Val Thr Ile Ser Cys Phe Gly Ser Ser Ser Asn Ile Gly Ser Asn
                                25
Ser Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Phe Ser Asn Asp Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Asp Ser Leu Ala Ile Ser Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu
Asn Gly Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
```

```
<210> SEQ ID NO 312
<211> LENGTH: 375
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 312
gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc
                                                                         60
teetgtgeag cetetggatt eacttteagt aatgeetgga tgagetgggt eegeeagget
                                                                        120
ccagggaagg ggctggagtg ggttggccgt attaaaagca aaactgatgg tgggacaaca
gactacgetg etceegtgaa aggeagatte accateteaa gagatgatte aaaagacaeg
                                                                        240
ctgtatctgc aaatgaacag cctgaaaacc gaggacacag ccgtgtatta ctgtaccaca
                                                                        300
tetgatagea geggetggtt egggtaetae ggaatggaeg tetggggeea agggaeeaeg
                                                                        360
gtcaccgtct cctca
                                                                        375
<210> SEQ ID NO 313
<211> LENGTH: 125
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 313
Glu Val Gl<br/>n Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1<br/> \phantom{0} 10 \phantom{0} 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Ala
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Gly Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala
Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asp Thr
Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr
Tyr Cys Thr Thr Ser Asp Ser Ser Gly Trp Phe Gly Tyr Tyr Gly Met
           100
                               105
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
                          120
<210> SEO ID NO 314
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 314
Phe Gly Ser Ser Ser Asn Ile Gly Ser Asn Ser Val Asn
      5
<210> SEQ ID NO 315
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 315
Ser Asn Asp Gln Arg Pro Ser
```

```
<210> SEQ ID NO 316
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 316
Ala Ala Trp Asp Asp Ser Leu Asn Gly Val Val
               5
<210> SEQ ID NO 317
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 317
Gly Phe Thr Phe Ser Asn Ala Trp Met Ser
                5
<210> SEQ ID NO 318
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 318
Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala Pro
Val Lys Gly
<210> SEQ ID NO 319
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 319
Ser Asp Ser Ser Gly Trp Phe Gly Tyr Tyr Gly Met Asp Val
<210> SEQ ID NO 320
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 320
cagtetgtgc tgactcagec acceteaacg tetgggacec eegggeagag ggteaceate
                                                                       60
tettgttttg gaagcaacte caacategga agteaaactg ttaaetggta eeagcaacte
                                                                       120
ccaggaacgg cccccaaact cctcatcttt agtcatcatc accggccctc aggggtccct
                                                                       180
gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcag tgggctccag
                                                                       240
tctgaggatg aggctgatta ttactgtgca acatgggatg acagcctgaa tggtgtggta
                                                                       300
ttcggcggag ggaccaaact gaccgtccta
                                                                       330
<210> SEQ ID NO 321
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 321
Gln Ser Val Leu Thr Gln Pro Pro Ser Thr Ser Gly Thr Pro Gly Gln
                                    10
```

Arg Val Thr Ile Ser C	ys Phe Gly Ser Asn Ser 25	Asn Ile Gly Ser Gln 30	
Thr Val Asn Trp Tyr G	ln Gln Leu Pro Gly Thr 40	Ala Pro Lys Leu Leu 45	
Ile Phe Ser His His H	is Arg Pro Ser Gly Val 55	Pro Asp Arg Phe Ser	
Gly Ser Lys Ser Gly T	hr Ser Ala Ser Leu Ala 0 75	Ile Ser Gly Leu Gln 80	
Ser Glu Asp Glu Ala A 85	sp Tyr Tyr Cys Ala Thr 90	Trp Asp Asp Ser Leu 95	
Asn Gly Val Val Phe G	ly Gly Gly Thr Lys Leu 105	Thr Val Leu 110	
<210> SEQ ID NO 322 <211> LENGTH: 375 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens		
<400> SEQUENCE: 322			
gaggtgcagc tggtggagtc	tgggggaggc ttggtaaagc	ctggggggtc ccttagactc	60
teetgtgeag eetetggatt	cactttcagt gacgcctgga	tgagctgggt ccgccaggct	120
ccagggaagg gactggggtg	ggttggccgt attaaaagca	aaactgatgg tgggacaaca	180
gacttcgctg cacccgtgaa	aggcagattc accatctcaa	gagatgattc aaaaaacacg	240
ctgtatctgc aaatgaacag	cctgaaaacc gaggacacag	ccgtgtatta ctgtacctca	300
tctcatagca gcgcctggta	cggctacttc ggtatggacg	tctggggcca agggaccacg	360
gtcaccgtct cctca			375
<210> SEQ ID NO 323 <211> LENGTH: 125 <212> TYPE: PRT <213> ORGANISM: Homo	sapiens		
<400> SEQUENCE: 323			
Glu Val Gln Leu Val G 1 5	lu Ser Gly Gly Gly Leu 10	Val Lys Pro Gly Gly 15	
Ser Leu Arg Leu Ser C	ys Ala Ala Ser Gly Phe 25	Thr Phe Ser Asp Ala 30	
Trp Met Ser Trp Val A 35	rg Gln Ala Pro Gly Lys 40	Gly Leu Gly Trp Val 45	
Gly Arg Ile Lys Ser L 50	ys Thr Asp Gly Gly Thr 55	Thr Asp Phe Ala Ala 60	
Pro Val Lys Gly Arg P 65 7	he Thr Ile Ser Arg Asp 0 75	Asp Ser Lys Asn Thr 80	
Leu Tyr Leu Gln Met A 85	sn Ser Leu Lys Thr Glu 90	Asp Thr Ala Val Tyr 95	
Tyr Cys Thr Ser Ser H	is Ser Ser Ala Trp Tyr 105	Gly Tyr Phe Gly Met 110	
Asp Val Trp Gly Gln G 115	ly Thr Thr Val Thr Val 120	Ser Ser 125	
<210> SEQ ID NO 324 <211> LENGTH: 13 <212> TYPE: PRT			

<212> TYPE: PRT

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 324
Phe Gly Ser Asn Ser Asn Ile Gly Ser Gln Thr Val Asn
               5
                                   10
<210> SEQ ID NO 325
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 325
Ser His His Arg Pro Ser
<210> SEQ ID NO 326
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 326
Ala Thr Trp Asp Asp Ser Leu Asn Gly Val Val
<210> SEQ ID NO 327
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 327
Gly Phe Thr Phe Ser Asp Ala Trp Met Ser
              5
<210> SEQ ID NO 328
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 328
Arg Ile Lys Ser Lys Thr Asp Gly Gly Thr Thr Asp Phe Ala Ala Pro
                                    10
Val Lys Gly
<210> SEQ ID NO 329
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 329
Ser His Ser Ser Ala Trp Tyr Gly Tyr Phe Gly Met Asp Val
    5
<210> SEQ ID NO 330
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 330
cagtetgeee tgacteagee tgeeteegtg tetgggtete etggacagte gateaceate
tectgeactg gaaccageag taatgttggg agttataacc ttgteteetg gtaccaacag
```

cacccaggca aagcccccaa actcatgatt tetgaggtca gtaageggce etcaggaett 180	
totaatogot tototggoto caagtotggo aacaeggoot cootgacaat ototgggoto 240	
caggotgagg acgaggotga ttattactgo tgotoatatg caggtagtag cactttaata 300	
tteggeggag ggaceaaget gacegteeta 330	
<210> SEQ ID NO 331 <211> LENGTH: 110 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 331	
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5 10 15	
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asn Val Gly Ser Tyr 20 25 30	
Asn Leu Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45	
Met Ile Ser Glu Val Ser Lys Arg Pro Ser Gly Leu Ser Asn Arg Phe 50 55 60	
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 55 70 75 80	
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95	
Ser Thr Leu Ile Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 110	
<pre><211> LENGTH: 360 <212> TYPE: DNA</pre>	
:211> LENGTH: 360 :212> TYPE: DNA :213> ORGANISM: Homo sapiens	
:211> LENGTH: 360 :212> TYPE: DNA :213> ORGANISM: Homo sapiens :400> SEQUENCE: 332	
211> LENGTH: 360 212> TYPE: DNA 213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 aggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc 60	
211> LENGTH: 360 212> TYPE: DNA 213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 aggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtcctc 60 acctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120	
211> LENGTH: 360 212> TYPE: DNA 213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 aggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtcctc 60 acctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120 acagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180	
211> LENGTH: 360 212> TYPE: DNA 213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 aggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc 60 cctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120 cagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180 cgtccctca agagtcgagt caccatatca gtagacacgt ccaagaatca gttctccctg 240	
acctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120 ccagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180 ccgtccctca agagtcgagt caccatatca gtagacacgt ccaagaatca gttctccctg 240	
2211> LENGTH: 360 2212> TYPE: DNA 2213> ORGANISM: Homo sapiens 2400> SEQUENCE: 332 22332 2332 2332 2332 2332 2332 233	
2211> LENGTH: 360 2212> TYPE: DNA 2213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 Raggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtcctc 60 Rectgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagecc 120 Reagggaagg ggctggaatg gattgggat atcaatcata gtggaaacac caagtacaac 180 Regtccctca agagtcgagt caccatatca gtagacacgt ccaagaatca gtctccctg 240 Ragctgagct ctgtgaccgc cgcggacacg gctgtgtatt actgtgcgag aggcgattt 300 Reggagtggtt ttgactggtt cgacccctgg ggccagggaa ccctggtcac cgtctcctca 360 2210> SEQ ID NO 333 2211> LENGTH: 120 2212> TYPE: PRT 2213> ORGANISM: Homo sapiens	
2211> LENGTH: 360 2212> TYPE: DNA 2213> ORGANISM: Homo sapiens 400> SEQUENCE: 332 aggtgcage tacagcagtg gggcgcagga ccgttgaage etteggagac cctgtcecte 60 acctgcgctg tetataatgg gtcettcagt ggttactact ggagctggat ccgccagcee 120 aggtgcagaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180 aggtccetca agagtcgagt caccatatca gtagacacgt ccaagaatca gttetcectg 240 aggtggact etgtgaccgc egeggacacg getgtgtatt actgtgegag aggegatttt 300 aggagtggtt ttgactggtt egaccectgg ggccagggaa ecctggtcac egtetcetca 360 2210> SEQ ID NO 333 2211> LENGTH: 120 2212> TYPE: PRT 2213> ORGANISM: Homo sapiens 400> SEQUENCE: 333 Sin Val Gln Leu Gln Gln Trp Gly Ala Gly Pro Leu Lys Pro Ser Glu	
2211> LENGTH: 360 2212> TYPE: DNA 2213> ORGANISM: Homo sapiens 2400> SEQUENCE: 332 2233caggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc 60 2243caggtgcagc tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120 2243cagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180 2344 2444 2445 2445 2445 2445 2445 245 245	
2211> LENGTH: 360 2212> TYPE: DNA 2213> ORGANISM: Homo sapiens 2400> SEQUENCE: 332 233ggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtcctc 60 24cctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120 24ccagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180 24cctgcctca agagtcgagt caccatatca gtagacacgt ccaagaatca gttctccctg 240 24ccaggaggt ctggaccgc cgcggacacg gctgttatt actgtgcgag aggcgatttt 300 24ccgagtggtt ttgactggtt cgacccctgg ggccagggaa ccctggtcac cgtctcctca 360 25cc SEQ ID NO 333	

```
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80
      70
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
               85
 \hbox{Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln } \\
           100
                            105
Gly Thr Leu Val Thr Val Ser Ser
      115
<210> SEQ ID NO 334
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 334
Thr Gly Thr Ser Ser Asp Val Gly Ser Tyr Asn Leu Val Ser
             5
<210> SEQ ID NO 335
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 335
Glu Gly Ser Lys Arg Pro Ser
<210> SEQ ID NO 336
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 336
Cys Ser Tyr Ala Gly Ser Ser Thr Leu Ile
1 5
<210> SEQ ID NO 337
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 337
Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
1 5
<210> SEQ ID NO 338
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 338
Glu Ile Asn His Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys Ser
1 5
<210> SEQ ID NO 339
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 339
```

```
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro
<210> SEQ ID NO 340
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEOUENCE: 340
cagtetgeec tgacteagec tgccteegtg tetgggtete etggacagte gateaceate
                                                                      60
tcctgcactg gaaccagcag taatgttggg acttataaac ttgtctcctg gtaccaacag
                                                                     120
cacccaggea aageceecaa acteatgatt tetgaggtea gtaageggee eteaggaett
                                                                     180
totaatogot tototggoto caagtotggo aacaoggoot cootgacaat ototgggoto
                                                                     240
caggctgagg acgaggctga ttattactgc tcctcatatg caggtgatag cactttggta
ttcggcggag ggaccaagct gaccgtccta
                                                                     330
<210> SEQ ID NO 341
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 341
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asn Val Gly Thr Tyr
                               25
Lys Leu Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
                           40
Met Ile Ser Glu Val Ser Lys Arg Pro Ser Gly Leu Ser Asn Arg Phe
                        55
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
                    70
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Ala Gly Asp
Ser Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
                               105
<210> SEQ ID NO 342
<211> LENGTH: 359
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 342
caggtgcacc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc
                                                                      60
acctgcgctg tctacaatgg gtccttcagt ggttactatt ggagctggat ccgccagccc
ccagggaagg ggctggattg gattggggat atcaatcata gtggaaacac caagtacaac
ccgtccctca agagtcgagt caccatatca gtagacacgg ccaagaatca gttctccctg
aagctgagtt ctgtgaccgc cgcggacacg gctgtgtatt actgtgcgag aggcgatttt
tggagtggtt ttgactggtt cgacccctgg ggccagggaa ccctggtcac cgtctcctc
<210> SEQ ID NO 343
<211> LENGTH: 120
<212> TYPE: PRT
```

```
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 343
Gln Val His Leu Gln Gln Trp Gly Ala Gly Pro Leu Lys Pro Ser Glu
                           10
Thr Leu Ser Leu Thr Cys Ala Val Tyr Asn Gly Ser Phe Ser Gly Tyr
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Asp Trp Ile
Gly Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys
Ser Arg Val Thr Ile Ser Val Asp Thr Ala Lys Asn Gln Phe Ser Leu
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln
                    105
Gly Thr Leu Val Thr Val Ser Ser
<210> SEQ ID NO 344
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 344
Thr Gly Thr Ser Ser Asn Val Gly Thr Tyr Lys Leu Val Ser
               5
<210> SEQ ID NO 345
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 345
Glu Val Ser Lys Arg Pro Ser
<210> SEQ ID NO 346
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 346
Ser Ser Tyr Ala Gly Asp Ser Thr Leu Val
             5
<210> SEQ ID NO 347
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 347
Asn Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
<210> SEQ ID NO 348
<211> LENGTH: 16
<212> TYPE: PRT
```

Jun. 23, 2011

```
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 348
Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys Ser
              5
                                  10
<210> SEQ ID NO 349
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 349
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro
<210> SEQ ID NO 350
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 350
cagtetgeec tgacteagec tgeeteegtg tetgggtete etggacagte gateaceate
tectgeactg gaaccageag taatgttggg agttataace ttgteteetg gtaccaacaa
cacccaggca aagcccccaa actcatgctt tctgaggtca gtaagcggcc ctcaggactt
totagtogot tototggoto caagtotggo gacacggoot cootgacaat ototgggoto
caggctgagg acgaggctga ttattactgc tgctcatatg caggtagtag cactttggta
ttcggcggag ggaccaagct gaccgtccta
                                                                    330
<210> SEQ ID NO 351
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 351
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
                      10
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asn Val Gly Ser Tyr
           20
Asn Leu Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
Met Leu Ser Glu Val Ser Lys Arg Pro Ser Gly Leu Ser Ser Arg Phe
Ser Gly Ser Lys Ser Gly Asp Thr Ala Ser Leu Thr Ile Ser Gly Leu
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser
Ser Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
<210> SEQ ID NO 352
<211> LENGTH: 360
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 352
caggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc
```

```
acctgcgctg tctatggtgg gtccttcagt ggttactact ggagctggat ccgccagccc
ccagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac
ccgtccctca agagtcgagt caccatatca gtagacacgt ccaagaatca gttctccctg
                                                                     240
aagetgaact etgtgaeege egeggaeaeg getgtgtatt aetgtgegag aggegatttt
                                                                     300
tggagtggtt ttgactggtt cgacccctgg ggccagggaa ccctggtcac cgtctcttct
                                                                     360
<210> SEQ ID NO 353
<211> LENGTH: 120
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 353
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Pro Leu Lys Pro Ser Glu
Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
Gly Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
Lys Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
                        90
Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln \,
          100
                            105
Gly Thr Leu Val Thr Val Ser Ser
       115
<210> SEQ ID NO 354
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 354
Thr Gly Thr Ser Ser Asn Val Gly Ser Tyr Asn Leu Val Ser
      5
<210> SEQ ID NO 355
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 355
Glu Val Ser Lys Arg Pro Ser
<210> SEQ ID NO 356
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 356
Cys Ser Tyr Ala Gly Ser Ser Thr Leu Val
```

```
<210> SEO ID NO 357
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 357
Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
<210> SEQ ID NO 358
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 358
Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys Ser
<210> SEQ ID NO 359
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 359
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro
               5
<210> SEQ ID NO 360
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 360
cagtetgeec tgactcagec tgeeteegtg tetgggtete etggacagte gateaceate
                                                                      60
teetgeactg gaaccageag taatgttggg agttataace ttgteteetg gtaccaaaag
                                                                     120
cacccaggca aagcccccaa actcatgatt tctgaggtca gtaagcggcc ctcaggactt
                                                                     180
tetaateget tetetggete eaagtetgge aacaeggeet eeetgacaat etetggete
                                                                     240
caggetgagg acgaggetga ttattactge tgeteatatg caggtagtag tactttggta
                                                                     300
ttcggcggag ggaccaaact gaccgtccta
                                                                     330
<210> SEQ ID NO 361
<211> LENGTH: 110
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 361
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asn Val Gly Ser Tyr
Asn Leu Val Ser Trp Tyr Gln Lys His Pro Gly Lys Ala Pro Lys Leu
Met Ile Ser Glu Val Ser Lys Arg Pro Ser Gly Leu Ser Asn Arg Phe
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
```

```
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser
Ser Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
           100
                              105
<210> SEQ ID NO 362
<211> LENGTH: 360
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 362
caggtgcagc tacagcagtg gggcgcagga ccgttgaagc cttcggagac cctgtccctc
acctgcgctg tctatggtgg gtccttcagt ggttactact ggagctggat ccgccagccc
ccagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac
ccgtccctca agagtcgagt caccatatca gtagacacgt ccaaaaaatca tttctccctg
aagctgagtt ctgtgaccgc cgcggacacg gctgtgtatt actgtgcaag aggcgatttt
tggagtggtt ttgactggtt cgacccctgg ggccagggaa ccctggtcac cgtctcctca
<210> SEQ ID NO 363
<211> LENGTH: 120
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 363
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Pro Leu Lys Pro Ser Glu
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
Gly Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys
                     55
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn His Phe Ser Leu
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln
           100
Gly Thr Leu Val Thr Val Ser Ser
       115
<210> SEQ ID NO 364
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 364
Thr Gly Thr Ser Ser Asn Val Gly Ser Tyr Asn Leu Val Ser
<210> SEQ ID NO 365
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 365
```

```
Glu Val Ser Lys Arg Pro Ser
               5
<210> SEQ ID NO 366
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 366
Cys Ser Tyr Ala Gly Ser Ser Thr Leu Val
               5
<210> SEQ ID NO 367
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 367
Gly Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
<210> SEQ ID NO 368
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 368
Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys Ser
              5
                                   10
<210> SEQ ID NO 369
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 369
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp
               5
<210> SEQ ID NO 370
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 370
cagtetgeec tgaeteagee tgeeteegtg tetgggtete etggaeagte gateaceate
                                                                       60
tectgeactg gaaccageag taatgttggg acttataaac ttgteteetg gtaccaacag
                                                                      120
cacccagaca aagcccccaa actcattatt tctgaggtca gtaagcggcc ctcaggactt
totaatogot tototggoto caagtotggo aacaoggoot cootgacaat ototgggoto
caggctgagg acgaggttga ttattactgc tcctcatatg caggtgatag cactttggta
ttcggcggag ggaccaagct gaccgtccta
<210> SEQ ID NO 371
<211> LENGTH: 110
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 371
```

Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5 10 15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asn Val Gly Thr Tyr 20 25 30
Lys Leu Val Ser Trp Tyr Gln Gln His Pro Asp Lys Ala Pro Lys Leu 35 40 45
Ile Ile Ser Glu Val Ser Lys Arg Pro Ser Gly Leu Ser Asn Arg Phe 50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80
Gln Ala Glu Asp Glu Val Asp Tyr Tyr Cys Ser Ser Tyr Ala Gly Asp 85 90 95
Ser Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 110
<210> SEQ ID NO 372 <211> LENGTH: 360 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 372
caqqtqcacc tacaqcaqtq qqqcqcaqqa ccqttqaaqc cttcqqaqac cctqtccctc 60
acctgcgctg tctataatgg gtccttcagt ggttactact ggagctggat ccgccagccc 120
ccagggaagg ggctggaatg gattggggat atcaatcata gtggaaacac caagtacaac 180
cogtootta agagtogagt caccatatca gtagacacgg ccaagaatca gttotocctg 240
aagetgagtt etgtgacege egeggacaeg getgtgtatt aetgtgegag aggegatttt 300
tggagtggtt ttgactggtt cgaccottgg ggccagggaa coctggtcac cgtctcctcc 360
<210> SEQ ID NO 373 <211> LENGTH: 120 <212> TYPE: PRT <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 373
Gln Val His Leu Gln Gln Trp Gly Ala Gly Pro Leu Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Tyr Asn Gly Ser Phe Ser Gly Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ala Lys Asn Gln Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> SEQ ID NO 374 <211> LENGTH: 14

```
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 374
Thr Gly Thr Ser Ser Asn Val Gly Thr Tyr Lys Leu Val Ser 1 \phantom{\bigg|}
<210> SEQ ID NO 375
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 375
Glu Val Ser Lys Arg Pro Ser
<210> SEQ ID NO 376
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 376
Cys Ser Ser Tyr Ala Gly Asp Ser Thr Leu Val
<210> SEQ ID NO 377
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 377
Asn Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
1 5
<210> SEQ ID NO 378
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 378
Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys Ser
               5
                                     10
<210> SEQ ID NO 379
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 379
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp
<210> SEQ ID NO 380
<211> LENGTH: 330
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 380
cagtetgeec tgaeteagee tgeeteegtg tetgggtete etggaeagte gateaceate
teetgeactg gaaccageag taatgttggg acttataage ttgteteetg gtaccaacaa
cacccaggca aagcccccaa actcatgatt tctgaggtca gtaagcggcc ctcaggactt
```

tctaatcgct tct	ctggctc caag	tctggc aacac	ggeet eeetgae	aat ctctgggctc	240
caggctgagg acg	aggctga ttat	tactgc tcctc	atatg caggtga	tag cactttgata	300
gtcggcggag gga	ccaagct gacc	gtccta			330
<210> SEQ ID N <211> LENGTH: <212> TYPE: PR <213> ORGANISM	110 T	ns			
<400> SEQUENCE	: 381				
Gln Ser Ala Le 1	u Thr Gln Pr 5	o Ala Ser Va 10	-	Pro Gly Gln 15	
Ser Ile Thr Il	_	r Gly Thr Se 25	r Ser Asn Val	Gly Thr Tyr 30	
Lys Leu Val Se	r Trp Tyr Gl	n Gln His Pr 40	o Gly Lys Ala 45	Pro Lys Leu	
Met Ile Ser Gl	u Val Ser Ly 55	s Arg Pro Se	r Gly Leu Ser 60	Asn Arg Phe	
Ser Gly Ser Ly 65	s Ser Gly As 70	n Thr Ala Se	r Leu Thr Ile 75	Ser Gly Leu 80	
Gln Ala Glu As	p Glu Ala As 85	p Tyr Tyr Cy 90	s Ser Ser Tyr	Ala Gly Asp 95	
Ser Thr Leu Il		y Gly Thr Ly 105	s Leu Thr Val	Leu 110	
<210> SEQ ID N <211> LENGTH: <212> TYPE: DN <213> ORGANISM	360 A	ns			
<400> SEQUENCE	: 382				
caggtgcacc tac	aacagtg gggc	gcagga ccgtt	gaagc cttcgga	gac cctgtccctc	60
acctgcgctg tct	ataatgg gtcc	ttcagt ggtta	ctact ggagctg	gat ccgccagccc	120
ccagggaagg ggc	tggaatg gatt	ggggat atcaa	tcata gtggaaa	cac caagtacaac	180
ccgtccctca aga	gtcgagt cacc	atatca gtaga	cacgg ccaagaa	tca gttctccctg	240
aagctgaatt ctg	tgaccgc cgcg	gacacg gctgt	gtatt actgtgc	gag aggcgatttt	300
tggagtggtt ttg	actggtt cgac	ccctgg ggcca	gggaa ccctggt	cac cgtctcttca	360
<210> SEQ ID N <211> LENGTH: <212> TYPE: PR <213> ORGANISM	120 T	ns			
<400> SEQUENCE	: 383				
Gln Val His Le 1	u Gln Gln Tr 5	p Gly Ala Gl 10		Pro Ser Glu 15	
Thr Leu Ser Le		a Val Tyr As 25	n Gly Ser Phe	Ser Gly Tyr 30	
Tyr Trp Ser Tr 35	p Ile Arg Gl	n Pro Pro Gl 40	y Lys Gly Leu 45	Glu Trp Ile	
Gly Asp Ile As 50	n His Ser Gl 55	y Asn Thr Ly	s Tyr Asn Pro 60	Ser Leu Lys	

```
Ser Arg Val Thr Ile Ser Val Asp Thr Ala Lys Asn Gln Phe Ser Leu
Lys Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
Arg Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro Trp Gly Gln \,
                      105
            100
Gly Thr Leu Val Thr Val Ser Ser
     115
<210> SEQ ID NO 384
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 384
Thr Gly Thr Ser Ser Asn Val Gly Thr Tyr Lys Leu Val Ser
   5
<210> SEQ ID NO 385
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 385
Glu Val Ser Lys Arg Pro Ser
<210> SEQ ID NO 386
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 386
Cys Ser Ser Tyr Ala Gly Asp Ser Thr Leu Ile 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10
<210> SEQ ID NO 387
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 387
Asn Gly Ser Phe Ser Gly Tyr Tyr Trp Ser
      5
<210> SEQ ID NO 388
<211> LENGTH: 16
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 388
Asp Ile Asn His Ser Gly Asn Thr Lys Tyr Asn Pro Ser Leu Lys Ser
<210> SEQ ID NO 389
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 389
Gly Asp Phe Trp Ser Gly Phe Asp Trp Phe Asp Pro
```

10

```
<210> SEQ ID NO 390
<211> LENGTH: 333
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 390
cagtetgtgc tgacgcagec gccctcagtg tetggggccc cagggcagag ggtcaccate
                                                                       60
teetgeactg ggageagete caacateggg geaggttatg gtgtataetg gtaceageag
                                                                      120
cttccaggaa cagccccaa actcctcatc tatggtcaca acaatcggcc ctcaggggtc
cctgaccgat tctctggctc caagtctgac acctcagcct ccctggccat cactgggctc
caggctgaag atgaggctga ttattactgc cagtcctatg acagcaacct gattggttct
gtcttcggaa ctgggaccaa ggtcaccgtc cta
                                                                      333
<210> SEQ ID NO 391
<211> LENGTH: 111
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 391
Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly
Tyr Gly Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu
Leu Ile Tyr Gly His Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe
Ser Gly Ser Lys Ser Asp Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu 65 70 75 80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Asn
Leu Ile Gly Ser Val Phe Gly Thr Gly Thr Lys Val Thr Val Leu
<210> SEQ ID NO 392
<211> LENGTH: 351
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 392
caggttcagc tggtgcagtc tggagctgag gtgaaggaac ctgggggcctc agtgaaggtc
tcctgcaagg cttctggtta cacctttacc agctatggtg tcagctgggt gcgacaggcc
cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatggtaa cacactctat
gcacagcacc tcctgggcag agtcaccatg accacagaca catccacgag cacagcctac
atggagetga ggageetgag atetgaegae aeggeegtat attattgtge gagagaggat
ttggggatgg gtgactactg gggccaggga accctggtca ccgtctcctc a
<210> SEQ ID NO 393
<211> LENGTH: 117
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
```

```
<400> SEOUENCE: 393
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Glu Pro Gly Ala
                                  1.0
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
                              25
Gly Val Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                  40
Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Leu Tyr Ala Gln His Leu
Leu Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Glu Asp Leu Gly Met Gly Asp Tyr Trp Gly Gln Gly Thr Leu
Val Thr Val Ser Ser
      115
<210> SEQ ID NO 394
<211> LENGTH: 14
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 394
Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Gly Val Tyr
<210> SEQ ID NO 395
<211> LENGTH: 7
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 395
Gly His Asn Asn Arg Pro Ser
1 5
<210> SEQ ID NO 396
<211> LENGTH: 11
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 396
Gln Ser Tyr Asp Ser Asn Leu Ile Gly Ser Val
               5
<210> SEQ ID NO 397
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 397
Gly Tyr Thr Phe Thr Ser Tyr Gly Val Ser
<210> SEQ ID NO 398
<211> LENGTH: 17
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
```

```
<400> SEOUENCE: 398
Trp Ile Ser Ala Tyr Asn Gly Asn Thr Leu Tyr Ala Gln His Leu Leu
                                   1.0
Gly
<210> SEQ ID NO 399
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 399
Glu Asp Leu Gly Met Gly Asp Tyr
               5
<210> SEQ ID NO 400
<211> LENGTH: 362
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 400
Met Gly Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Phe
Leu Leu Pro Gly Ser Leu Gly Ala Glu Ser His Leu Ser Leu Leu Tyr
His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp
Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asn Ser Leu
Arg Gly Glu Ala Glu Pro Cys Gly Ala Tr<br/>p Val Trp Glu As<br/>n Gln Val 65 70 75 80
Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys
              85
                                  90
Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr
          100
                              105
Leu Gln Gly Leu Leu Gly Cys Glu Leu Gly Pro Asp Asn Thr Ser Val
Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp
                       135
Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ile Ser Gln Arg
                150
                                     155
Trp Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr Phe Leu Leu
Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg Gly Arg Gly
Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys Ala Arg Pro
               200
Ser Ser Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe Ser Phe Tyr
Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Leu Ala Ala Gly
Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser Phe His Ala
                                 250
Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His Tyr Cys Cys
```

-continued	
260 265 270	
Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val Glu Leu Glu 275 280 285	
Ser Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val Ile Gly Val	
290 295 300	
Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu Trp Arg Arg 305 310 315 320	
Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg Gly Asp Asp	
325 330 335	
Thr Gly Val Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp Ala Asp Leu 340 345 350	
Lys Asp Val Asn Val Ile Pro Ala Thr Ala	
355 360	
<210> SEQ ID NO 401	
<211> LENGTH: 990 <212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 401	
gcetecacea agggeeeate ggtetteeee etggeaceet eetecaagag eacetetggg	60
ggcacagegg ecetgggetg eetggteaag gaetaettee eegaaceggt gaeggtgteg	120
tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca	180
ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc	240
tacatetgea aegtgaatea caageeeage aacaceaagg tggacaagaa agttgageee	300
aaatettgtg acaaaactca cacatgeeca eegtgeecag cacetgaact eetgggggga	360
ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct	420
gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg	480
tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac	540
agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag	600
gagtacaagt gcaaggtete caacaaagee etcecageee ecategagaa aaccatetee aaageeaaag ggcageeeeg agaaceacag gtgtacaeee tgeeeecate eegggatgag	720
ctgaccaaga accaggicag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc	780
	840
gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg ctggactccg acggctcctt cttcctctat agcaagctca ccgtggacaa gagcaggtgg	900
cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg	960
cagaagagcc tetecetyte teegggtaaa	990
<210> SEQ ID NO 402 <211> LENGTH: 330	
<pre><212> TYPE: PRT <213> ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 402	
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys	
1 5 10 15	

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu 35	Pro Val	Thr Va	l Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
Gly Val His 50	Thr Phe	Pro Al	a Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
Leu Ser Ser 65	Val Val	Thr Va	l Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
Tyr Ile Cys	Asn Val	Asn Hi	s Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Lys Val Glu	Pro Lys	Ser Cy	s Asp	Lys 105	Thr	His	Thr	CAa	Pro	Pro	Сув
Pro Ala Pro 115		. Leu Gl	y Gly 120		Ser	Val	Phe	Leu 125	Phe	Pro	Pro
Lys Pro Lys 130	Asp Thr	Leu Me		Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
Val Val Val 145	Asp Val	Ser Hi 150	s Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
Tyr Val Asp	Gly Val		l His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
Glu Gln Tyr	Asn Ser 180	Thr Ty	r Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
His Gln Asp 195		. Asn Gl	у Lys 200		Tyr	ГÀа	CÀa	Lys 205	Val	Ser	Asn
Lys Ala Leu 210	Pro Ala	Pro Il 21		Lys	Thr	Ile	Ser 220	ГÀа	Ala	Lys	Gly
Gln Pro Arg 225	Glu Pro	Gln Va 230	l Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Asp	Glu 240
Leu Thr Lys	Asn Gln 245		r Leu	Thr	Сув 250	Leu	Val	ГÀа	Gly	Phe 255	Tyr
Pro Ser Asp	Ile Ala 260	Val Gl	u Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Asn
Asn Tyr Lys 275		Pro Pr	o Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe
Leu Tyr Ser 290	Lys Leu	Thr Va		Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn
Val Phe Ser 305	Cys Ser	Val Me 310	t His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320
Gln Lys Ser	Leu Ser 325		r Pro	Gly	330 Lys						
<210> SEQ I											
<211> LENGT <212> TYPE: <213> ORGAN	DNA	o sapie	ns								
<400> SEQUE	NCE: 403										
gcctccacca	agggccca	tc ggtc	ttccc	c ct	ggcg	ccct	gct	ccag	gag	cacci	ccgag 60
agcacagcgg	ccctgggc	tg cctg	gtcaa	g ga	ctact	ttcc	ccg	aacc	ggt	gacg	gtgtcg 120
tggaactcag	gcgctctg	ac cago	ggcgt	g ca	cacci	ttcc	cag	ctgt	cct a	acag	cctca 180
ggactctact	ccctcago	ag cgtg	gtgac	c gt	gecet	cca	gca	actt	egg (cacc	cagacc 240
tacacctgca	acgtagat	ca caag	cccag	c aa	cacca	aagg	tgg	acaa	gac a	agtt	gagege 300
aaatgttgtg	tcgagtgc	cc accg	tgccc	a gc	acca	cctg	tgg	cagga	acc 9	gtca	gtette 360

ctcttccccc caaaacccaa ggacaccctc atgateteec ggacceetga ggteaegtge	420
gtggtggtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtggacggc	480
gtggaggtgc ataatgccaa gacaaagcca cgggaggagc agttcaacag cacgttccgt	540
gtggtcagcg teetcacegt tgtgcaceag gaetggetga aeggcaagga gtacaagtge	600
aaggteteca acaaaggeet eecageeeee ategagaaaa eeateteeaa aaccaaaggg	660
cageceegag aaccacaggt gtacaceetg eccecateee gggaggagat gaccaagaac	720
caggicagec igaectgeet ggicaaagge tietaeeeea gegaeatege egiggagigg	780
gagagcaatg ggcagcegga gaacaactac aagaccacac eteccatget ggacteegac	840
ggctccttct tcctctacag caagctcacc gtggacaaga gcaggtggca gcaggggaac	900
gtetteteat geteegtgat geatgagget etgeacaace actacaegea gaagageete	960
teeetgtete egggtaaa	978
<210> SEQ ID NO 404 <211> LENGTH: 326 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 404	
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 10 15	
Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30	
Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45	
Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60	
Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr 65 70 75 80	
Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95	
Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro 100 105 110	
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 115 120 125	
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 130 135 140	
Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly 145 150 155 160	
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn 165 170 175	
Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp 180 185 190	
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro 195 200 205	
Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu 210 215 220	

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 225 230235235240

```
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
               245
                                   250
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
           260
                               265
Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
                          280
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
                     295
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
                310
                                      315
Ser Leu Ser Pro Gly Lys
<210> SEQ ID NO 405
<211> LENGTH: 321
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 405
cgaactgtgg ctgcaccatc tgtcttcatc ttcccgccat ctgatgagca gttgaaatct
ggaactgcct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc caaagtacag
tggaaggtgg ataacgccct ccaatcgggt aactcccagg agagtgtcac agagcaggac
agcaaggaca gcacctacag cctcagcagc accctgacgc tgagcaaagc agactacgag
aaacacaaag totacgootg cgaagtcaco catcagggoo tgagotogoo cgtcacaaag
agcttcaaca ggggagagtg t
                                                                     321
<210> SEQ ID NO 406
<211> LENGTH: 107
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEOUENCE: 406
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
                                 10
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
                               25
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
<210> SEQ ID NO 407
<211> LENGTH: 318
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 407
```

gccaacaagg ccacactagt gtgtctgatc agtgacttct accegggage tgtgacagtg	120
geetggaagg cagatggeag eecegteaag gegggagtgg agaccaccaa accetecaaa	180
cagagcaaca acaagtacge ggecagcage tacetgagee tgaegceega geagtggaag	240
teccacagaa getacagetg ecaggteaeg catgaaggga geaeegtgga gaagaeagtg	300
gcccctacag aatgttca	318
<210> SEQ ID NO 408 <211> LENGTH: 106 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 408	
Gly Gln Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser 1 10 15	
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30	
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro	
Val Lys Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn 50 55 60	
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys	
65 70 75 80 Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val	
85 90 95	
Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 105	
<210> SEQ ID NO 409 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 409	
ggtcagccca aggctgcccc ctcggtcact ctgttcccgc cctcctctga ggagcttcaa	60
gccaacaagg ccacactggt gtgtctcata agtgacttct acccgggagc cgtgacagtg	120
gcctggaagg cagatagcag ccccgtcaag gcgggagtgg agaccaccac accctccaaa	180
caaagcaaca acaagtacgc ggccagcagc tatctgagcc tgacgcctga gcagtggaag	240
teccacagaa getacagetg ecaggteacg catgaaggga geacegtgga gaagacagtg	300
gcccctacag aatgttca	318
<210> SEQ ID NO 410 <211> LENGTH: 106 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 410	
Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 1 5 10 15	
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30	
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro 35 40 45	

Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys 70 Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 <210> SEQ ID NO 411 <211> LENGTH: 318 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 411 ggtcagccca aggctgcccc ctcggtcact ctgttcccac cctcctctga ggagcttcaa gccaacaagg ccacactggt gtgtctcata agtgacttct acccgggagc cgtgacagtg gcctggaagg cagatagcag ccccgtcaag gcgggagtgg agaccaccac accctccaaa caaagcaaca acaagtacgc ggccagcagc tacctgagcc tgacgcctga gcagtggaag tcccacaaaa gctacagctg ccaggtcacg catgaaggga gcaccgtgga gaagacagtg 318 qcccctacaq aatqttca <210> SEQ ID NO 412 <211> LENGTH: 106 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 412 Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 <210> SEQ ID NO 413 <211> LENGTH: 318 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 413 ggtcagccca aggctgcccc atcggtcact ctgttcccgc cctcctctga ggagcttcaa gccaacaagg ccacactggt gtgcctgatc agtgacttct acccgggagc tgtgaaagtg qcctqqaaqq caqatqqcaq cccqtcaac acqqqaqtqq aqaccaccac accctccaaa

-continued	
cagagcaaca acaagtacgc ggccagcagc tacctgagcc tgacgcctga gcagtggaag	240
teccacagaa getacagetg ecaggteacg catgaaggga geacegtgga gaagacagtg	300
gcccctgcag aatgtgca	318
<210> SEQ ID NO 414 <211> LENGTH: 106 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 414	
Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 1 5 10 15	
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30	
Phe Tyr Pro Gly Ala Val Lys Val Ala Trp Lys Ala Asp Gly Ser Pro 35 40 45	
Val Asn Thr Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn 50 55 60	
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys 65 70 75 80	
Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 85 90 95	
Glu Lys Thr Val Ala Pro Ala Glu Cys Ala 100 105	
<210> SEQ ID NO 415 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 415	
ggtcagccca aggctgcccc ctcggtcact ctgttcccac cctcctctga ggagcttcaa	60
gccaacaagg ccacactggt gtgtctcgta agtgacttct acccgggagc cgtgacagtg	120
gcctggaagg cagatggcag ccccgtcaag gtgggagtgg agaccaccaa accctccaaa	180
caaagcaaca acaagtatge ggccagcage tacetgagee tgaegeeega gcagtggaag	240
tcccacagaa gctacagctg ccgggtcacg catgaaggga gcaccgtgga gaagacagtg	300
gcccctgcag aatgctct	318
<210> SEQ ID NO 416 <211> LENGTH: 106 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 416	
Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 1 10 15	
Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Val Ser Asp 20 25 30	
Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro 35 40 45	
Val Lys Val Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn 50 55 60	
Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys	

65 70 75 80

Ser His Arg Ser Tyr Ser Cys Arg Val Thr His Glu Gly Ser Thr Val
85 90 95

Glu Lys Thr Val Ala Pro Ala Glu Cys Ser
100 105

What is claimed:

- 1. An isolated antibody that binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D of less than about 10^{-8} M that exhibits at least one of the properties selected from the group consisting of:
 - (a) at least about a 50-fold higher K_D at a pH of about 5.5 compared to its K_D for said hepcidin at a pH of about 7.4;
 - (b) at least about a 5-fold faster clearance of said hepcidin compared to antibody 1S1; and
- (c) an off rate of about 6×10^{-2} s⁻¹ or higher at about pH 5.5.
- **2**. An isolated antibody that binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D of less than about 10^{-8} M that exhibits at least one of the properties selected from the group consisting of:
 - (a) reduces the level of total human hepcidin in serum by at least 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg doses of said antibody and (ii) a pre-complexed single dose of 3.7 μg of human hepcidin with a 1 mg dose of said antibody,
 - (b) reduces the level of total human hepcidin in serum in a mouse by at least 90% about 24 hours after said mouse is administered a single dose of 3.7 μg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody;
 - (c) results in a greater than 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and
 - (d) results in at least about a 2-fold higher intracellular accumulation of hepcidin in Fan transfected HEK293 cells incubated with said antibody compared to antibody 1S1.
- 3. The antibody of claim 1 that exhibits at least one of the properties selected from the group consisting of
 - (a) reduces the level of total human hepcidin in serum by at least about 90% in a C57BL/6 mouse about 24 hours after the administration to said mouse of (i) a 1 mg doses of said antibody and (ii) a pre-complexed single dose of 3.7 μg of human hepcidin with a 1 mg dose of said antibody,
 - (b) reduces the level of total human hepcidin in serum in a mouse by at least about 90% about 24 hours after said mouse is administered a single dose of 3.7 μg of human hepcidin, wherein said hepcidin is administered three days after said mouse is pre-dosed with said antibody;
 - (c) results in a greater than about 50% reduction in overall accumulation of total serum hepcidin in mice treated with said antibody compared to antibody 1S1; and
 - (d) results in at least about a 2-fold higher intracellular accumulation of hepcidin in FcRn transfected HEK293 cells incubated with said antibody compared to antibody 1S1.
- **4.** An isolated antibody according to any of claims **1-3** that binds to human hepcidin of SEQ ID NO: 9 with an affinity K_D

- of less than about 10^{-8} M, wherein said antibody increases circulating iron level or Tsat in a mouse overexpressing human hepcidin for at least 1 day after a single dose of antibody.
- 5. The isolated antibody according to any of claims 1-3, wherein said antibody decreases iron in ferroportin-expressing cells stimulated with 50 ng/mL hepcidin at an EC_{50} of about 20 nM or less.
- **6**. An isolated antibody that binds to human hepcidin of SEQ ID NO: 9, with an affinity K_D of at least 10^{-8} M, wherein said antibody is obtained by:
 - (a) replacing an amino acid in the heavy or light chain of said antibody with a histidine;
 - (b) screening the antibody obtained in (a) for differential pH binding;
 - (c) replacing another amino acid in the heavy or light chain of said antibody with a histidine; and
 - (d) screening said antibody for having at least one of the properties selected from the group consisting of:
 - (i) at least about 50-fold higher K_D at about pH 5.5 compared to its K_D for said hepcidin at about pH 7.4;
 - (ii) an off rate of about 6×10^{-2} s⁻¹ or higher at about pH 5.5.
- 7. The isolated antibody according to any of claims 1-3 or 6, wherein said antibody increases the level in a subject of one of at least hemoglobin or hematocrit, or both.
- **8**. The isolated antibody according to any of claims 1-3 or 6, wherein said antibody increases in a subject of one of at least the red blood cell count, the red blood cell hemoglobin content or the red blood cell mean cell volume of red blood cell count, or any combinations thereof.
- 9. The isolated antibody according to any of claims 1-3 or 6, wherein said antibody increases in a subject of one of at least the reticulocyte count, the reticulocyte hemoglobin content or the reticulocyte mean cell volume of reticulocyte count, or any combinations thereof.
- 10. The isolated antibody according to any of claims 1-3 or 6, wherein said antibody inhibits the iron-regulating activity of hepcidin.
- 11. An isolated antibody according to any of claims 1-3 or 6, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 170 or to SEQ ID NO: 168, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 171-176, and any sequences comprising at least one amino acid change to any of SEO ID NOs: 171-176.
- 12. An isolated antibody according to any of claims 1-3 or 6, comprising SEQ ID NOs: 171-173.
- **13**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 174-176.
- 14. An isolated antibody according to any of claims 1-3 or 6, comprising an amino acid sequence at least 90% identical

- to SEQ ID NO: 333 or to SEQ ID NO: 331, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 334-349, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 334-349.
- **15**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 334-346.
- **16**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 347-349.
- 17. An isolated antibody according to any of claims 1-3 or 6, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 343 or to SEQ ID NO: 341, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 344-349, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 344-349.
- **18**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 344-346.
- 19. An isolated antibody according to any of claims 1-3 or 6, comprising SEQ ID NOs: 347-349.
- **20.** An isolated antibody according to any of claims **1-3** or **6**, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 353 or to SEQ ID NO: 351, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 354-359, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 354-359.
- 21. An isolated antibody according to any of claims 1-3 or 6, comprising SEQ ID NOs: 354-356.
- **22**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 357-359.
- 23. An isolated antibody according to any of claims 1-3 or 6 comprising an amino acid sequence at least 90% identical to SEQ ID NO: 363 or to SEQ ID NO: 361, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 364-369, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 364-369.
- **24**. An isolated antibody according to any of claims **1-3** or **6** comprising SEQ ID NOs: 364-366.
- **25**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 367-369.
- **26.** An isolated antibody according to any of claims **1-3** or **6**, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 373 or to SEQ ID NO: 371, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 374-379, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 374-379.
- **27**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 374-376.
- **28**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 377-379.
- **29**. An isolated antibody according to any of claims **1-3** or **6**, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 383 or to SEQ ID NO: 381, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 384-389, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 384-389.
- **30**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 384-386.
- **31**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 387-389.

- **32.** An isolated antibody according to any of claims **1-3** or **6**, comprising an amino acid sequence at least 90% identical to SEQ ID NO: 393 or to SEQ ID NO: 391, said polypeptide comprising at least one amino acid sequence selected from the group consisting of SEQ ID NOs: 394-399, and any sequences comprising at least one amino acid change to any of SEQ ID NOs: 394-399.
- **33**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 394-396.
- **34**. An isolated antibody according to any of claims **1-3** or **6**, comprising SEQ ID NOs: 387-389.
- **35**. An isolated antibody according to any of claims **1-3** or **6**, wherein said antibody comprises an amino acid sequence of SEQ ID NO: 170 wherein at least one of the amino acids at positions **52**, **57**, 99 and **107** of said amino acid sequence are replaced with a histidine or an amino acid sequence of SEQ ID NO: **168** wherein at least one of the amino acids at positions **27** and **89** of said amino acid sequence are replaced with a histidine.
- **36**. An isolated antibody according to any of claims **1-3** or **6** wherein said antibody comprises an amino acid sequence of SEQ ID NO: 168 wherein at least one of the amino acids at positions 27 and 89 of said amino acid sequence are replaced with a histidine.
- **37**. The isolated antibody according to claim **35** wherein an amino acid at position 107 of SEQ ID NO: 170 is replaced with a histidine.
- **38**. The isolated antibody according to claim **37**, wherein the amino acids at positions 57 and 107 of SEQ ID NO: 170 are both replaced with a histidine.
- **39**. The isolated antibody according to claim **35**, wherein the amino acid at position 107 of SEQ ID NO: 170 and the amino acid at position 27 of SEQ ID NO: 168 are both replaced with a histidine.
- **40**. The isolated antibody according to claim **37**, wherein the amino acid at position 107 of SEQ ID NO: 170 and the amino acid at position 89 of SEQ ID NO: 168 are both replaced with a histidine.
- **41**. The isolated antibody according to claim **37**, wherein the amino acids at positions 99 and 107 of SEQ ID NO: 170 are both replaced with a histidine.
- **42**. The isolated antibody according to any one of claims **1-3** or **6**, wherein the antibody is a monoclonal antibody.
- **43**. The isolated antibody according to claim **42**, wherein said antibody is a chimeric, humanized, or human antibody.
- **44**. The isolated antibody according to claim **42**, wherein said antibody is a human antibody.
- **45**. The isolated antibody according to claim **42**, wherein the antibody is of an IgG isotype.
- **46**. The isolated antibody according to claim **42**, wherein the antibody is of an IgG1, IgG2, IgG3 or IgG4 isotype.
- **47**. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the antibody according to any one of claims **1-3** or **6**.
- **48**. An expression vector comprising the nucleic acid molecule according to claim **47** operably linked to a regulatory control sequence.
- 49. A host cell comprising the vector according to claim 48.
- **50**. A method of using the host cell according to claim **49** to produce an antibody, comprising culturing the host cell under suitable conditions such that the nucleic acid is expressed to produce the antibody.
- **51**. The method according to claim **50**, further comprising recovering the antibody from the host cell culture.

- **52.** A composition comprising the antibody according to any one of claims **1-3** or **6** and a pharmaceutically acceptable carrier, diluent or excipient.
- **53**. A method of treating a disorder of iron homeostasis in a subject in need thereof comprising administering to said subject the antibody according to any one of claims 1-3 or 6.
- **54**. The method according to claim **53**, wherein the disorder of iron homeostasis is selected from the group consisting of: anemia, sepsis, anemia of inflammation, anemia of cancer, chemotherapy induced anemia, chronic inflammatory anemia, congestive heart failure, end stage renal disorder, chronic kidney disease (stage I, II, III, IV or V), iron deficiency anemia, a disorder of iron homeostasis, ferroportin disease, hemochromatosis, diabetes, inflammation, rheumatoid arthritis, arteriosclerosis, tumors, vasculitis, systemic lupus erythematosus, hemoglobinopathies, and red blood cell disorders.
- **55.** A method of treating a human with an elevated level of hepcidin comprising administering the composition according to claim **52**.
- **56**. A method of treating a human with anemia comprising administering the composition according to claim **52**.
- 57. The method according to claim 56, wherein the human suffering from anemia, sepsis, anemia of inflammation, anemia of cancer, chronic inflammatory anemia, congestive heart failure, end stage renal disorder, chronic kidney disease (stage I, II, III, IV or V), iron deficiency anemia, a disorder of iron homeostasis, ferroportin disease, hemochromatosis, diabetes, inflammation, rheumatoid arthritis, arteriosclerosis, tumors, vasculitis, systemic lupus erythematosus, hemoglobinopathies, red blood cell disorders.
- **58**. The method according to claim **55**, further comprising administering to said human an erythropoiesis stimulator

- selected from the group consisting of erythropoietin, erythropoietin variants and antibodies that bind erythropoietin receptor.
- **59**. The method according to claim **58**, wherein the erythropoiesis stimulator is human erythropoietin of SEQ ID NO:
- **60**. The method according to claim **58**, wherein the erythropoiesis stimulator is darbepoetin alfa of SEQ ID NO: 73.
- **61**. The method according to claim **58**, wherein the method further comprises administering iron to said patient.
- **62**. The method according to claim **56**, further comprising administering to said human an erythropoiesis stimulator selected from the group consisting of erythropoietin, erythropoietin variants and antibodies that bind erythropoietin receptor.
- **63**. The method according to claim **62**, wherein the erythropoiesis stimulator is human erythropoietin of SEQ ID NO: 72.
- **64**. The method according to claim **62**, wherein the erythropoiesis stimulator is darbepoetin alfa of SEQ ID NO: 73.
- **65**. The method according to claim **62**, wherein the method further comprises administering iron to said patient.
- **66**. A host cell comprising the nucleic acid molecule according to claim **47**.
- **67**. A method of using the host cell according to claim **66** to produce an antibody, comprising culturing the host cell under suitable conditions such that the nucleic acid is expressed to produce the antibody.
- **68**. The method according to claim **67**, further comprising recovering the antibody from the host cell culture.

* * * * *