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CTCTACTACCTGTACTGTCAGGTGCACTTTGATGAGGGGAAGGCTGTCTA
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Protein StructureProtein Structure

Primary - amino acid sequencePrimary - amino acid sequence
Four levels of protein structureFour levels of protein structure

>gi|119526|sp|P01588|EPO_HUMAN Erythropoietin 
precursor (Epoetin)

RLICDSR LERYLLEA EAENITTGCAE CSLNENIT DT N YA

>gi|119526|sp|P01588|EPO_HUMAN Erythropoietin 
precursor (Epoetin)

RLICDSR LERYLLEA EAENITTGCAE CSLNENIT DT N YAPPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAW
KRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSG
LRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRG
KLKLYTGEACRTGDR

PPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAW
KRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSG
LRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRG
KLKLYTGEACRTGDRKLKLYTGEACRTGDR

Efficiency Of Signalling Through Cytokine Receptors Depends Critically On Receptor 
Orientation, R.S.Syed, S.W.Reid, C.Li, J.C.Cheetham, K.H.Aoki,b.Liu, H.Zhan, T.D.Osslund, 
A J Chirino J Zhang J Finer Moore S Elliott K Sitney B A Katz B J Matthews

KLKLYTGEACRTGDR

Efficiency Of Signalling Through Cytokine Receptors Depends Critically On Receptor 
Orientation, R.S.Syed, S.W.Reid, C.Li, J.C.Cheetham, K.H.Aoki,b.Liu, H.Zhan, T.D.Osslund, 
A J Chirino J Zhang J Finer Moore S Elliott K Sitney B A Katz B J MatthewsA.J.Chirino, J.Zhang, J.Finer-Moore, S.Elliott, K.Sitney, B.A.Katz, B.J.Matthews, 
J.J.Wendoloski, J.Egrie, R.M.Stroud, Nature, V. 395, 511, 1998.
A.J.Chirino, J.Zhang, J.Finer-Moore, S.Elliott, K.Sitney, B.A.Katz, B.J.Matthews, 
J.J.Wendoloski, J.Egrie, R.M.Stroud, Nature, V. 395, 511, 1998.



Protein StructureProtein Structure
Four levels of protein structureFour levels of protein structure
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Tertiary - packing secondary structure Tertiary - packing secondary structure 
Four levels of protein structureFour levels of protein structure
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Quaternary - multiple chainsQuaternary - multiple chains
Four levels of protein structureFour levels of protein structure
Q y pQ y p



Experimental StructureExperimental Structure
Proteins too small to seeProteins too small to see
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Solid State NMRSolid State NMR
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Solution NMRSolution NMR
Magnetization transfers between nuclei
Distance dependent
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Homology modeling is routine with 

sequence identity > 30%
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ThreadingThreading
“Thread” a protein sequence onto a 

known structure
“Thread” a protein sequence onto a 

known structure
Score the threaded foldScore the threaded fold
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Uses a representative library of protein 

folds and various fitness functions to 
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find the most appropriate fold for a 
given probe sequence

KPAAHLIGDPSKQNSLLWRANTDRAFLQDGFSLSNNSLLVPTSGIYFVYSQVVFSGKAYS
PKATSSPLYLAHEVQLFSSQYPFHVPLLSSQKMVYPGLQEPWLHSMYHGAAFQLTQGDQLQ Q Q Q Q Q Q
STHTDGIPHLVLSPSTVFFGAFAL

L.Jaroszewski, L.Rychlewski, B.Zhang and A.Godzik "Fold Predictions by a Hierarchy of Sequence, Threading and 
Modeling Methods” Protein Science 7:1431-1440 (1998).g ( )



GeneFold ThreadingGeneFold Threading
Describes each template protein in 

terms of:
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Structure database based on PDB
Clustered by 50% sequence identity
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An example: Mining the Family of 
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Browse the hits for the selected PDB 

chain
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Drill in on possible hitsDrill in on possible hits
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Verify by viewing full GeneFold runVerify by viewing full GeneFold run
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Gene mining by remote homology 

detection has been very successful
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Vector Machines. Christianni and ShawVector Machines. Christianni and Shaw--TaylorTaylor

SVM work by Paul Mc Donagh, 
Amgen Inc.
SVM work by Paul Mc Donagh, 
Amgen Inc.Amgen Inc.Amgen Inc.
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Trained by scientists
Success primarily depends on 
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Genome sequenced, but still a LONG 

way to go for function
Genome sequenced, but still a LONG 
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Structure homology methods valuable 
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represented
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