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ESQDPAPFLNRLVRPRRSAPKGRKTRARRAIAAHYEVHPRPGQDGAQAGV
DGTVSGWEEARINSSSPLRYNRQIGEFIVTRAGLYYLYCQVHFDEGKAVY
LKLDLLVDGVLALRCLEEFSATAASSLGPQLRLCQVSGLLALRPGSSLRI
RTLPWAHLKAAPFLTYFGLFQVH
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Human Genome contains approximately 30-
60 thousand genes
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Experimental methods too slow for 
complete classification

Experimental methods too slow for 
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Computational methods for elucidating 
function needed
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Weeks or months, around $100K, to solve 
single globular structure
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Problem - many proteins have same fold 
with little or no sequence homology
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~15K structures in the Protein Data Bank
Around 4K are unique (< 90% identical)
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Primary - amino acid sequencePrimary - amino acid sequence
Four levels of protein structureFour levels of protein structure
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Four levels of protein structureFour levels of protein structure
Secondary - local structure such as Secondary - local structure such as y

helices and  strands
y

helices and  strands
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Tertiary - packing secondary structure Tertiary - packing secondary structure 
Four levels of protein structureFour levels of protein structure
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elements into domains
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elements into domains
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Quaternary - multiple chainsQuaternary - multiple chains
Four levels of protein structureFour levels of protein structure
Q y pQ y p
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Proteins too small to seeProteins too small to see

Solid State NMR
Solution NMR
Solid State NMR
Solution NMR
X-Ray CrystallographyX-Ray Crystallography
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Backbone consists of diplanesBackbone consists of diplanes
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Bond angles measurable to external 
magnetic field

Bond angles measurable to external 
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Two intersecting vectors defines plane 
orientation
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Magnetization transfers between nuclei
Distance dependent
Magnetization transfers between nuclei
Distance dependentp
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Fold structure using Distance Geometry
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Molecule crystallized, crystals singular, 
perfect quality

Molecule crystallized, crystals singular, 
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Align sequence with unknown structure to 
sequence with known structure

Align sequence with unknown structure to 
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and apply to unknown
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Higher homology produces more accurate
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Homology modeling is routine with 
sequence identity > 30%

Homology modeling is routine with 
sequence identity > 30%

Less than 25% homology is termed the 
twilight zone and requires other methods
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Folding (Threading)
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“Thread” a protein sequence onto a known 
structure

“Thread” a protein sequence onto a known 
structure

Score the threaded foldScore the threaded fold
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GeneFold ThreadingGeneFold Threading®

Uses a representative library of protein 
folds and various fitness functions to 

Uses a representative library of protein 
folds and various fitness functions to 
find the most appropriate fold for a 
given probe sequence
find the most appropriate fold for a 
given probe sequence

KPAAHLIGDPSKQNSLLWRANTDRAFLQDGFSLSNNSLLVPTSGIYFVYSQVVFSGKAYS
PKATSSPLYLAHEVQLFSSQYPFHVPLLSSQKMVYPGLQEPWLHSMYHGAAFQLTQGDQL
STHTDGIPHLVLSPSTVFFGAFAL

L.Jaroszewski, L.Rychlewski, B.Zhang and A.Godzik "Fold Predictions by a Hierarchy of Sequence, Threading and Modeling 
Methods” Protein Science 7:1431-1440 (1998).
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Describes each template protein in terms 
of:

Describes each template protein in terms 
of:
Sequence
Burial pattern of residues
Sequence
Burial pattern of residuesp
Local main chain conformation
Secondary structure classification
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Local main chain conformation
Secondary structure classification
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Structure database based on PDB
Clustered by 50% sequence identity
Structure database based on PDB
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Theoretical, long (>900) and short (<40) 

structures removed
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Scores a target sequence using:
Sequence-sequence: No structural 

i f ti
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information
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single residue mounted in the template 
structural environment

Structure-structure: Comparison between p
predicted and actual secondary structure
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predicted and actual secondary structure
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Three scoring methods
Sequence similarity: sequence term only
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No one method produces a reliable 
prediction, but different methods give 

No one method produces a reliable 
prediction, but different methods give 
consistently correct answers

Jury Prediction
consistently correct answers

Jury Predictiony
Two methods agree or
One of the three has a high reliability
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GeneFold Scores
A given probe is aligned with every template 

GeneFold Scores
A given probe is aligned with every template 
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P-value is calculated for alignment ensemble 

and scored
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using distribution of scores
The inverse of the P-value is reported
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This process is repeated independently 
for the three methods

This process is repeated independently 
for the three methods
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Database of all gene predictions 
translated to protein sequences

Database of all gene predictions 
translated to protein sequences

Calculate GeneFold scores for each 
sequence

Calculate GeneFold scores for each 
sequenceq

Relate interesting families using known 
proteins

q
Relate interesting families using known 

proteinsproteins
Search by family

proteins
Search by family
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An example: Mining the Family of 
Interleukins

An example: Mining the Family of 
Interleukins
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Browse the hits for the selected PDB 
chain

Browse the hits for the selected PDB 
chain
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Drill in on possible hitsDrill in on possible hits
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Verify by viewing full GeneFold runVerify by viewing full GeneFold run
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Gene mining by remote homology 
detection has been very successful

Gene mining by remote homology 
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MANY false positives - many hits to wade 
through

MANY false positives - many hits to wade 
through

Requires expert in particular family to 
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Some folds hard to score TNFR’s
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Not all folds represented
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Not all folds represented
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Utilize advances in remote homology 
detection

Utilize advances in remote homology 
detection

As structure representatives grow, so will 
ability of remote homology detection

As structure representatives grow, so will 
ability of remote homology detectiony gy

Utilize fast, automated methods for 
assigning structure family

y gy
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assigning structure familyassigning structure familyassigning structure family



Fast Threading Data AnalysisFast Threading Data Analysis®

To mine threading data, we need 
programs that:

To mine threading data, we need 
programs that:

Repeat interpretation of threading output 
consistently and quickly

Repeat interpretation of threading output 
consistently and quicklyy q y

We can train to recognize different folds in 
the output
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We can train to recognize different folds in 

the outputthe output
Aid protein structure experts by applying 

similar logic

the output
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similar logicsimilar logicsimilar logic



Fast Threading Data AnalysisFast Threading Data Analysis®

We chose:
The support vector machine algorithm
We chose:
The support vector machine algorithmpp g
Quick to train, quick to give answers
Generates score which can be used as
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measure of confidence in answer 
generatedgeneratedgenerated
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SVM takes ‘positive’ and ‘negative’ fold 
examples

R d iti G ti

SVM takes ‘positive’ and ‘negative’ fold 
examples

R d iti G tiRed = positive, Green = negative
Uses function (kernel function) to plot data to 

different type of space
Graphic shows 3-D linear kernel space

Red = positive, Green = negative
Uses function (kernel function) to plot data to 

different type of space
Graphic shows 3-D linear kernel spaceG ap c s o s 3 ea e e space
Threading uses 1823-D spherical space
Regression techniques fit a plane
Vectors from points ‘support’ the plane

G ap c s o s 3 ea e e space
Threading uses 1823-D spherical space
Regression techniques fit a plane
Vectors from points ‘support’ the plane
Term coined - support vector machine
If fall on red side of plane - new member of 

the fold
Distance from plane gives measure of

Term coined - support vector machine
If fall on red side of plane - new member of 

the fold
Distance from plane gives measure ofFigure from cover of book: Introduction to Support Figure from cover of book: Introduction to Support Distance from plane gives measure of 

confidence in prediction
Distance from plane gives measure of 

confidence in prediction
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Vector Machines. Christianni and ShawVector Machines. Christianni and Shaw--TaylorTaylor

SVM work by Paul McDonagh, 
Immunex Corporation
SVM work by Paul McDonagh, 
Immunex CorporationImmunex CorporationImmunex Corporation
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Trained by scientists
Success primarily depends on scientific 
Trained by scientists
Success primarily depends on scientific p y p

input to training set
Scientist finds members of fold - positive
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Scientist finds members of fold - positiveScientist finds members of fold positive 
training set

Scientist identifies all other folds

Scientist finds members of fold positive 
training set

Scientist identifies all other foldsScientist identifies all other folds -
negative training set

Scientist identifies all other folds -
negative training set
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Threading algorithm run on unknowns 
1823*3 data points for each protein in a 
Threading algorithm run on unknowns 
1823*3 data points for each protein in a p p

set
Support vector machines find which of the
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1823*3 points and values carry the most 
predictive power
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Early results have been very promising
predictive power

Early results have been very promising
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Genome sequenced, but still a LONG way 
to go for function

Genome sequenced, but still a LONG way 
to go for function

Structure homology methods valuable in 
identifying unknown sequences

Structure homology methods valuable in 
identifying unknown sequencesy g q

Many structure families not represented
Need better remote homology detection
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Many structure families not represented
Need better remote homology detectionNeed better remote homology detection 

methods
N d f t t t d th d

Need better remote homology detection 
methods

N d f t t t d th dNeed fast, automated methodsNeed fast, automated methods


